Sample Questions for Exam #1

1. Calculate the following limits.
 (a) \(\lim_{x \to 4} \frac{x^2 + 5x + 4}{x^2 + 3x + 4} \)
 (b) \(\lim_{x \to 3} \frac{x^2 - x - 6}{x^2 - 9} \)
 (c) \(\lim_{h \to 0} \frac{\sqrt{4 + h} - 2}{h} \)
 (d) \(\lim_{x \to 0} \frac{1}{x^2} \)
 (e) \(\lim_{x \to 1} e^{x^2+1} \)

2. Find the horizontal and vertical asymptotes of the function
 \[f(x) = \frac{3x^2 + 2x - 1}{4x^2 - 1}. \]

3. Prove that the equation \(x^5 + 2x = 1 \) has a solution in the interval \(0 < x < 1 \).

4. A ball is thrown into the air, and its height (in feet) above the ground after \(t \) seconds is \(H(t) = 40t - 16t^2 \). Find the velocity at which the ball will hit the ground.

5. Let \(f(x) = \frac{1}{2-x} \). Calculate \(f'(x) \).

6. Find an equation for the tangent line to the curve \(y = x^3 \) at the point \((2,8) \).

7. A hamburger is removed from a hot grill and placed on a bun. The hamburger’s temperature (in degrees Fahrenheit) after \(t \) minutes is \(f(t) \). Do you expect \(f'(1) \) to be positive or negative? Explain.

8. Let \(f(x) = 2x^2 - x \). Use the derivative of \(f \) to find the intervals where \(f \) is increasing and the intervals where \(f \) is decreasing.