Let \(f(x) = x^2 \). In this problem, we will find the area of the shaded region in the following figure:

(a) We’re going to cover the region with \(n \) rectangles of equal width. We will denote that width by \(\Delta x \). What should this width be?

\[\Delta x = \]

(b) In order to cover the shaded region, the height of each rectangle should be equal to the value of \(f \) at the right side of the rectangle. Let \(x_i \) denote the \(x \)-coordinate of that right endpoint. Find the following values (hint: sketch a few rectangles on the figure above):

\[x_1 = \]
\[x_2 = \]
\[x_i = \]
(c) Find the areas of the rectangles:

\[A_1 = \]
\[A_2 = \]
\[A_i = \]

(d) Write down the total area of all the rectangles \(A_1, \ldots A_n \).

(e) Simplify the expression above using the fact that \(1^2 + 2^2 + 3^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \). (Don’t worry about trying to verify that this formula is true – you may use it without proving it here.) (Hint: You’ll have to do some factoring.)

(f) Now take the limit of the expression you found in part (e) as the number of rectangles, \(n \), goes to infinity. (This will give you the area of the shaded region in the figure.)
2. Repeat the process you used in problem 1 to find the area in the figure, but this time, instead of covering the shaded region with rectangles, make sure that your rectangles all fit *inside* the shaded region. (This means that your sample points, the x_i’s, should be left endpoints of the bases of the rectangles instead of right endpoints.) Begin by drawing a figure and some of the rectangles.