Worksheet #7 - Integration and Basic Physics

In this worksheet, you will use indefinite integrals to calculate some basic quantities typically encountered in physics courses.

Recall that, if \(p(t) \) is a position function and \(t \) represents time, then \(v = p' \) is velocity and \(a = v' \) is acceleration.

1. The velocity of an object at time \(t \) is \(v(t) = e^{2t} \text{ mi/hr} \) and the position of the object at time \(t = 1 \text{ hr} \) is \(p(1) = e^{2} \text{ mi} \). Find the position at time \(t \). Include units in your answer.

2. The acceleration of an object at time \(t \) is \(a(t) = te^t \). The initial velocity and initial position are both 0. Find the position at time \(t \). (Don’t worry about units in this question.)
3. The acceleration of an object is constant: \(a(t) = a \). The initial velocity (at time \(t = 0 \)) is \(v(0) = v_0 \). Use integration to find a formula for \(v(t) \).

4. Use the same setup as in the previous question, but you also know the initial position of the object is \(p(0) = p_0 \). Use integration to find a formula for \(p(t) \).
The acceleration of an object is $a(t) = \cos(\omega t)$, where ω is some given nonzero constant. The initial position is $p(0) = 1$, and the initial velocity is $v(0) = 0$. Find the position at time $t = \pi$.