Worksheet #3 - Net Change

In this worksheet, you will use definite integrals to study the total change of a quantity when the rate of change is not constant.

Let \(r(t) \) be the rate at which the world’s oil supply is consumed, where \(t \) is measured in years starting at \(t = 0 \) on January 1, 2000, and \(r(t) \) is measured in barrels per day.

1. What does \(\int_0^6 r(t) \, dt \) represent?

2. What does \(\int_0^T r(t) \, dt \) represent?

3. In the year 2000, the world consumed oil at a rate of \(31 \cdot 10^9 \) barrels per year, and the world’s known usable reserves were estimated to be \(1 \cdot 10^{12} \) barrels. At that rate of consumption, how long would the known usable supply last?
Suppose that in 2006, the world consumed oil at a rate of $34 \cdot 10^9$ barrels per year. Since the rate of consumption is not constant, you decide to model it with a linear function.

(a) Find a linear function for $r(t)$ that fits the given data.

(b) Use this linear function to estimate how long the world’s usable oil supply will last, again assuming that it was $1 \cdot 10^{12}$ barrels at the beginning of the year 2000. (Hint: Since the rate of consumption here isn’t constant, you can’t just divide the total usable supply by the rate. Instead, use problem 2 and set up an equation you can solve.)

Repeat problem 4 with the assumption that $r(t)$ is an exponential function instead of linear. (Hint: $\int e^{bt} \, dt = \frac{1}{b} e^{bt} + C$.)