(a) \[\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 2x + 4} \]

\[= \frac{(-4)^2 + 5(-4) + 4}{(-4)^2 + 2(-4) + 4} \]

\[= \frac{0}{8} \]

\[= 0 \]

(since the rational function is defined and thus continuous, at \(x = -4 \))

(b) \[\lim_{x \to 3} \frac{x^2 - x - 6}{x^2 - 9} \]

\[= \lim_{x \to 3} \frac{(x-2)(x+3)}{(x-3)(x+3)} \]

\[= \lim_{x \to 3} \frac{x+2}{x+3} \]

\[= \frac{5}{6} \]
(c) \[\lim_{h \to 0} \frac{\sqrt{a^2 + h} - a}{h} = \lim_{h \to 0} \frac{\sqrt{a^2 + h} - a}{h} \frac{\sqrt{a^2 + h} + a}{\sqrt{a^2 + h} + a} \]
\[= \lim_{h \to 0} \frac{a^2 + h - a^2}{h(\sqrt{a^2 + h} + a)} \]
\[= \lim_{h \to 0} \frac{h}{h(\sqrt{a^2 + h} + a)} \]
\[= \lim_{h \to 0} \frac{1}{\sqrt{a^2 + h} + a} \]
\[= \frac{1}{\sqrt{a^2 + a}} \quad (\text{This simplifies to } \frac{1}{2a} \text{ if } a \text{ is positive}) \]

(d) \[\lim_{x \to 0} \frac{1}{x^2} \quad \text{D.N.E.} \]

(e) \[\lim_{x \to 1} e^{x^2 + 1} = e^{1^2 + 1} = e^2 \]

Since \(x^2 + 1 \) is continuous and \(e^x \) is continuous, so is the composition \(e^{x^2 + 1} \)
The denominator of \(f(x) = \frac{x^2 + 5x + 6}{x^2 - 4} \) is undefined when \(x = 2 \) or \(x = -2 \). Notice that

\[
\lim_{x \to 2} \frac{x^2 + 5x + 6}{x^2 - 4} = \lim_{x \to 2} \frac{(x+2)(x+3)}{(x+2)(x-2)}
\]

\[
= \lim_{x \to 2} \frac{x+3}{x-2} \quad \text{D.N.E.}
\]

Since

\[
\lim_{x \to 2^+} \frac{x+3}{x-2} = \infty
\]

and

\[
\lim_{x \to 2^-} \frac{x+3}{x-2} = -\infty.
\]

However,

\[
\lim_{x \to -2} \frac{x^2 + 5x + 6}{x^2 - 4} = \lim_{x \to -2} \frac{(x+2)(x+3)}{(x+2)(x-2)}
\]

\[
= \lim_{x \to -2} \frac{x+3}{x-2}
\]

\[
= \frac{1}{-5}
\]

The limit exists, so there is no asymptote here (only a hole).

Therefore the only asymptote is at \(\sqrt{x} = 2 \).
\[H(t) = 40t - 16t^2 \]

The velocity is
\[H'(t) = 40 - 32t. \]

We want to know what the velocity will be when the ball hits the ground, so we need to know when that happens (what will \(t \) be?).

The ball will hit the ground when \(H(t) = 0 \), so
\[40t - 16t^2 = 0 \]
\[\Rightarrow \quad t (40 - 16t) = 0 \]
\[\Rightarrow \quad t = 0 \text{ or } 40 - 16t = 0 \]
\[\Rightarrow \quad t = 0 \text{ or } t = \frac{40}{16} = \frac{5}{2}. \]

Thus, the ball hits the ground when \(t = \frac{5}{2} \). At that instant, the velocity will be
\[H'(\frac{5}{2}) = 40 - 32 \left(\frac{5}{2} \right) = -40 \]
\(f(x) = \frac{1}{2-x} \)

\[
\begin{align*}
 f'(x) &= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \\
 &= \lim_{h \to 0} \frac{\frac{1}{2-(x+h)} - \frac{1}{2-x}}{h} \\
 &= \lim_{h \to 0} \frac{\frac{1}{2-x-h} - \frac{1}{2-x}}{h} \\
 &= \lim_{h \to 0} \frac{\frac{2-x}{(2-x)(2-x-h)} - \frac{(2-x-h)}{(2-x)(2-x-h)}}{h} \\
 &= \lim_{h \to 0} \frac{\frac{2-x - 2-x+h}{(2-x)(2-x-h)}}{h} \cdot \frac{1}{h} \\
 &= \lim_{h \to 0} \frac{h}{(2-x)(2-x-h)} \cdot \frac{1}{h} \\
 &= \lim_{h \to 0} \frac{1}{(2-x)(2-x-h)} \\
 &= \frac{1}{(2-x)(2-x)} \cdot \frac{1}{2-x} \\
 &= \frac{1}{(2-x)^2}
\end{align*}
\]
5. \(f(x) = x^3 \)
\[f'(x) = 3x^2 \]
At \(x = 2 \), \(f'(2) = 3(2)^2 = 12 \).
The line through \((2, 8)\) with slope 12 is given by
\[y - 8 = 12(x - 2) \]
\[y - 8 = 12x - 24 \]
\[y = 12x - 16 \]

6. \(f'(1) \) is the rate of change of the temperature after 1 minute. Since the hamburger is cooling down, this rate should be **negative**.

7. \(f(x) = 2x^2 - x \)
\[f'(x) = 4x - 1 \]
\(f'(x) = 0 \) when \(4x - 1 = 0 \) \(\Rightarrow 4x = 1 \) \(\Rightarrow x = \frac{1}{4} \).
When \(x < \frac{1}{4} \), \(f'(x) < 0 \), so \(f \) is decreasing.
When \(x > \frac{1}{4} \), \(f'(x) > 0 \), so \(f \) is increasing.
Thus \(f \) increases on \((\frac{1}{4}, \infty)\) and decreases on \((\infty, \frac{1}{4})\)
To guarantee that the function is continuous at $x=3$, we need to have

$$f(3) = \lim_{x \to 3} f(x).$$

And

$$f(3) = a$$

$$\lim_{x \to 3} f(x) = \lim_{x \to 3} \frac{x^3 - 3x^2}{4x-12}$$

$$= \lim_{x \to 3} \frac{x^2(x-3)}{4(x-3)}$$

$$= \lim_{x \to 3} \frac{x^2}{4}$$

$$= \frac{9}{4}.$$

So we must have $a = \frac{9}{4}$.

9

$$f(x) = x^2 - x^2$$

$$f'(x) = 3x^2 - 2x = 0 \text{ when}$$

$$x(3x-2) = 0$$

$$\Rightarrow x = 0 \text{ or } 3x - 2 = 0$$

$$\Rightarrow x = 0 \text{ or } x = \frac{2}{3}$$

So the tangent line is horizontal at $x = 0$ and at $x = \frac{2}{3}$.