Homework for Weeks 10-11
Nov. 26-Dec. 7, 2007

The textbook exercises listed here should be completed before class begins; students will share solutions to these exercises at the beginning of class. You should be prepared to share a solution to any one of these.

Before Class on **Tuesday, November 27**, read Section 7.1 (pages 441-443) and work the following exercises:

Section 7.1, # 1, 3, 5, 7, 9

Before Class on **Wednesday, November 28**, read Section 7.1 (pages 443-446) and work the following exercises:

Section 7.1, # 19, 21, 23, 25, 27

Before Class on **Thursday, November 29**, work the following exercises:

Section 7.1, # 29, 31, 33, 35

Before Class on **Friday, November 30**, read Section 7.2 and work the following exercises:

Section 7.2, # 3, 5, 7, 9, 11, 13, 15

Before Class on **Monday, December 3**, work the following exercises:

Section 7.2, # 17, 19, 21, 23, 27, 29, 31, 33, 35

Before Class on **Tuesday, December 4**, read Section 7.3 (pages 458-463) and work the following exercises:

Section 7.3, # 1, 3, 7, 9

Before Class on **Wednesday, December 5**, read Section 7.3 (pages 464-467) and work the following exercises:

Section 7.3, # 21, 23, 25, 27, 29, 31, 33, 35

Before Class on **Thursday, December 6**, work the following exercises:

Pages 436-438, # 5, 7, 9, 11, 13, 17, 19, 23, 25, 27

Before Class on **Friday, December 7**, work the following exercises:

Pages 276-278, # 5, 7, 11, 13, 15, 17, 19, 21

Pages 168-169, # 13, 15, 29, 31, 33, 35
Written Homework

Your carefully written solutions to the following questions will be due at the beginning of class on **Friday, November 30**.

1. Draw a Venn diagram that illustrates the relationship between the following sets: \(A = \{1, 3, 4, 6\} \), \(B = \{2, 4, 6, 7\} \) and \(C = \{2, 3, 5\} \), where the universal set is \(U = \{1, 2, 3, 4, 5, 6, 7\} \).

2. Let \(A = \{1, 2, 3, 4\} \) and \(B = \{2, 4, 6\} \), where the universal set is \(U = \{1, 2, 3, 4, 5, 6\} \).
 (a) Find \(A \cap B \).
 (b) Find \(B' \).
 (c) Find \(A' \cap B' \).
 (d) Find \(n(A \cup B) \).
 (e) Find \(n(A \times B) \)

3. A small ice cream shop sells 18 different flavors of ice cream. They also have two different types of cones: sugar cones and waffle cones. A cone can have either one or two scoops of ice cream, and if there are two scoops, they can be the same or different flavors. How many different ice cream cone choices are possible?