Written Homework

Your carefully written solutions to the following questions will be due at the beginning of class on Monday, February 22.

1. Let \(f(x, y) = 4xy^2 - x^2y^2 - xy^3 \). Find the absolute maximum and minimum values of \(f \) on the closed triangular region with vertices \((0, 0), (0, 6)\) and \((6, 0)\).

2. Suppose we wish to solve the following system of equations:

\[
\begin{align*}
 x + y &= 1 \\
 y - x &= 2 \\
 y + 2x &= 3
\end{align*}
\]

This system does not have a solution because these lines do not intersect at a common point. However, we can find an approximate solution by looking for a point \((x_0, y_0)\) that minimizes the sum of the squares of the distance from each line. Find the point that accomplishes this.

Comment: You may use the following formula for the distance of a point \((x_0, y_0)\) to a line \(ax + by + d = 0\):

\[
\text{dist} = \frac{|ax_0 + by_0 + d|}{\sqrt{a^2 + b^2}}.
\]

You do not need to verify this formula to use it - we will derive it in class.

3. A box in the first octant has three faces on the coordinate planes and a vertex on the plane \(x + 2y + 4z = 8\). Calculate the maximum volume of such a box using the method of Lagrange multipliers.