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We discuss two generalizations of the fact that a bounded domain with a well-

behaved harmonic measure and a constant Poisson kernel is a ball. One gen-

eralization studies the case when the domain is unbounded and the Poisson

kernel is close to a constant in a pointwise sense. The second generalization

studies the bounded situation when the Poisson kernel is close to constant in

the sense that it has small BMO-seminorm. A prioiri regularity assumptions

are Ahlfors regularity and nontangential acessibility.
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Chapter 1

INTRODUCTION

1.1 Free Boundary Problems

A typical problem in the beginning study of partial differential examples is

a boundary-value problem, and the Dirichlet problem for Laplace’s equation

provides one of the simplest examples: Does there exist a function u satisfying







∆u = 0 in D

u = g on ∂D
. (1.1)

If so, what are it’s regularity properties? Here, the domain D and the boundary

data g are given.

A free-boundary problem turns this question inside-out. Assume that the

domain D is unknown, but that a solution u of (1.1) is known to exist, and that

it has certain regularity properties. What then can be said about the regularity

or the geometry of the domain D?

The ‘known properties’ of u can come in a variety of forms. A typical setting

occurs when u arises from a minimization problem in the calculus of variations

as in the following example. Given a domain Ω ⊂ R
n, let J be the functional

J(u) =

∫

Ω∩{u>0}

|∇u|2 + Q(x)2 dx, (1.2)

where Q is a given function and we have the side condition u ≥ 0 on D. Here

the domain of integration Ω ∩ {u > 0} is variable. Taking the first variation for
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this functional tells us that a minimizer will satisfy

∆u = 0 in Ω ∩ {u > 0}, u = 0 and |∇u| = Q on Ω ∩ ∂{u > 0}.

Problems like this in the calculus of variations arise in many physical situa-

tions. For example, in [1] the authors study the problem of optimizing heat

flow in a steady state through a surface ∂Ω with a given finite volume of insu-

lation on it’s interior. This question may be cast in terms similar to (1.2).

The existence and regularity properties of u, and of the boundary ∂{u >

0}, for (1.2) were studied by Alt and Caffarelli in [2]. Although our point of

view will be very different from this calculus-of-variations one, we mention

this example in particular because the paper [2] is the source of an important

technique, called non-homogeneous blow-up, of which we will make use later

on. This technique also played a major role in some of the articles on which

this dissertation is based.

Our approach will be to study the geometry and regularity of a domain as

determined by certain properties of the harmonic measure on its boundary.

The harmonic measure for the ball Br(P ) with pole at P is a constant mul-

tiple of the surface measure (n-dimensional Hausdorff measure) on ∂Br(P ). In

[15], Lewis and Vogel proved the converse result (with an additional hypoth-

esis): If ωP is harmonic measure for a bounded domain Ω with pole P ∈ Ω

satisfying ωP = cHn
x∂Ω, and such that

ωP (Bρ(Q)) ≤ Lρn for all Q ∈ ∂Ω and ρ > 0,

then Ω is a ball centered at P .

The additional hypothesis is needed to get a crude lower bound on the radius

of a ball contained in Ω and to make careful estimates of certain integrals that

describe the rate of decay of positive harmonic functions at the boundary ∂Ω.
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There are several directions in which one could try to generalize this result:

• What if Ω is unbounded?

• What if the harmonic measure is given by hHn
x∂Ω, where the function h

is close to a constant.

The second question here also requires that we specify what we mean by

a function being ‘close to a constant’, and there are multiple ways one might

define this.

Kenig and Toro [13] answered the first question. Preiss and Toro [16] an-

swered the second question with the assumption that h was close to a constant

in a point-wise sense. In this dissertation, we will combine these ideas to ad-

dress what happens when h is close to constant in a point-wise sense and Ω

is unbounded. We will also consider the bounded case with the point-wise as-

sumption replaced by one that says log h has small mean oscillation.

1.2 History

We begin with a tour of the earlier results upon which this work is based.

Readers unfamiliar with the terminology may wish to look through Section

1.3 first.

In 2001, Lewis and Vogel published in [15] that, if Ω ⊂ Rn+1 is a bounded

domain, regular for the Dirichlet problem, containing the origin, such that the

harmonic measure with pole at 0 satisfies

ω0(Br(X)) ∩ ∂Ω) ≤ Lrn for all X ∈ ∂Ω and 0 ≤ r ≤ r0

and

ω0 = aHn on ∂Ω
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for a positive constant a, then Ω is a ball with center at 0. It is then immediate

that the radius of the ball is also determined by the constant a, since we must

have
∫

∂Ω

aHn = ω0(∂Ω) = 1,

so that

Hn(∂Ω) =
1

a
.

If we now write Ω = Br(0), we get

σnrn =
1

a
,

where σn = Hn(B1(0)). Therefore

r = (σna)−
1
n .

This result was a generalization of an earlier proof (from 1992) by the same

authors that had required an additional hypothesis regarding regularity of the

boundary of Ω. The following is a rough sketch of the 2001 result.

The first step is to obtain a crude estimate of |∇v| near ∂Ω, where v is the

Green’s function for Ω with pole at 0. (When we say ‘crude’ in this dissertation,

we mean that it is not the best estimate we will obtain – just a starting point

that will lead to more refined results later.) This is done using the Riesz Rep-

resentation Formula for Subharmonic Functions. The idea is that, once you

have an estimate of the form |∇v| ≤ N near Ω, with N = N(L), the compar-

ison principle for harmonic functions allows you to obtain a lower bound on

the radius of the largest ball centered at the origin that is contained in Ω. Let

R = sup{r > 0; Br(0) ⊂ Ω}, and let GR denote the Green’s function for BR(0)

with pole at 0. Then if Q ∈ ∂Ω ∩ ∂BR(0), the comparison principle gives

|∇GR(0)| ≤ |∇v(Q)| ≤ N(L);
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but we also know

|∇GR(0)| =
1

σnRn
,

so we can conclude R ≥ (σnN(L))−
1
n . That is to say, R is bounded below in terms

of L.

The next step is to define M = lim supX→∂Ω |∇v| and to prove, via contradic-

tion, that M ≤ a. Achieving this allows one to repeat the calculations above to

get R ≥ (σna)−
1
n ; the isoperimetric inequality then implies Ω = BR(0). Having

a crude upper bound on |∇v| near ∂Ω is an important element of the indirect

proof.

Preiss and Toro [16] generalize this result as follows: Suppose that Ω ⊂ Rn+1

is a bounded domain containing the origin that satisfies

sup
0<r<1

sup
Q∈∂Ω

Hn(Br(Q) ∩ ∂Ω)

rn
< ∞.

Then given ǫ > 0 small enough, if the Poisson kernel h for Ω with pole at 0

exists and satisfies

sup
∂Ω

| log h| < ǫ,

then

BR1(0) ⊂ Ω ⊂ BR2(0)

with

e−ǫ ≤ σnRn
1 ≤ σnRn

2 ≤ eǫ.

One may think of this as a stability result for the theorem of Lewis and

Vogel: a small perturbation of the Poisson kernel from constant results in only

a small geometric perturbation of Ω from a ball.

The paper [16] actually goes further than this geometric result. The authors

also prove a regularity result for the boundary ∂Ω: if δ > 0 is sufficiently small
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RR 12

Figure 1.1: The boundary ∂Ω sits between the two spheres with radii R1 and

R2.

there exists ǫ > 0 so that, under the same conditions as above, Ω is δ-Reifenberg

flat. (See Definition (9) below.)

That argument is based in large part on the techniques in [2]. The idea there

is to define flatness of the boundary at a point Q ∈ ∂Ω in terms of the linear-

growth behavior of the Green’s function and the associated Poisson kernel near

Q. Having done this, one can use the theory of partial differential equation

to improve estimates, and thereby improve the measure of flatness at Q in

successively smaller neighborhoods. Alt and Caffarelli employ this argument

to show that, if the function Q used in the functional (1.2) is Holder continuous,

then the free-boundary ∂{u > 0} ∩ Ω of the minimizer u is in fact smooth.

That technique is modified slightly in [16]. The setup there does not al-

low the estimates to improve dramatically as one looks at successively smaller

neighborhoods of Q. But the estimates do persist as one looks at successively

smaller neighborhoods of Q, so the measure of flatness at a larger scale can be
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duplicated at all smaller scales.

Heuristically, the idea in [2] is that “flatness at one scale implies greater

flatness at a smaller scale”; in [16] the idea is that “flatness at one scale implies

similar flatness at all smaller scales.”

Kenig and Toro [13] develop a generalization of the results in [2] and, in

the process, obtain a generalization of Lewis and Vogel along different lines.

Instead of considering a bounded domain, the authors asked what happens

when Ω is unbounded. They proved that there exists δn > 0 such that if Ω ⊂
Rn+1 is an unbounded δ-Reifenberg flat chord arc domain (for δ ∈ (0, δn)), the

Green’s function with pole at ∞, v, and the corresponding Poisson kernel, h,

satisfy

sup
X∈Ω

|∇v(X)| ≤ 1 and h(Q) ≥ 1 for Hn a.e. Q ∈ ∂Ω,

then Ω is a half space, and in suitable coordinates, v(x, xn+1) = xn+1.

To summarize, given very loose assumptions about the growth properties of

harmonic measure on Euclidean balls, Lewis and Vogel proved that constant

Poisson kernels correspond to balls for bounded domains, while Kenig and Toro

showed that they correspond to half spaces for unbounded domains.

Again, a key idea was to use the “flat at one scale implies greater flatness

at smaller scales” argument described in [2].

The generalization sought in Chapter 2 of this dissertation combines these

ideas. We assume that Ω ⊂ Rn+1 is an unbounded domain, and that it’s Poisson

kernel is not much less than 1, while the Green’s function maintains a linear

growth near the boundary; and we assume that the boundary is ‘flat’ at very

large scales. We also require that ∂Ω be Ahlfors regular and that the harmonic

measure be well-behaved: ω(Br(Q)) ≤ Lrn for all balls Br(Q) centered on ∂Ω.

We use procedures similar to those in [13] to prove that the boundary is also

flat at all small scales. This result is a quantitative version of [13].
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Chapter 3 of this dissertation takes a very different approach to showing

stability of the result of Lewis and Vogel. We start with a bounded domain.

However, instead of perturbing the Poisson kernel h from constant in a point-

wise sense, as in [16], we perturb it in an average sense by assuming that log h

is a function of bounded mean oscillation (BMO) with small BMO-seminorm.

Our argument will begin as did Lewis and Vogel’s, with a crude estimate

on the gradient of a Green’s function near ∂Ω. However, to improve the gra-

dient estimate, the processes in [15] and [16] make explicit use of point-wise

properties of h which we will not have assumed. Instead, we modify gradient

estimates used in [14] when studying Poisson kernels of bounded mean oscilla-

tion.

As above, a comparison principle argument allows us to turn a gradient

estimate for the Green’s function into a lower bound for the radius of the largest

ball BR(0) contained in Ω.

Moving from there to an estimate on the radius of a ball containing Ω again

requires a different approach than is used in any of these other papers. In [15]

and [16], the authors were able to make use of their knowledge of the point-

wise behavior of h to estimate the total surface measure Hn(∂Ω); then another

comparison principle argument in [16] or an application of the isoperimetric

inequality in [15] completes the argument. With only a hypothesis about the

average behavior of h, we will not be able to use either approach.

Instead, we use a kind of ‘piecewise projection’ of ∂Ω onto concentric balls

around the origin to make an estimate of how much of the boundary is far from

the ‘inner ball’ already discovered. That quantity cannot be too large, and then

using the assumption that ∂Ω is Ahlfors regular, we manage to conclude that

no point of ∂Ω can be very far from that inner ball.

The process that goes from “flatness at a large scale” to “flatness at smaller
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scales” does not seem to work here, however, because it requires some knowl-

edge of the point-wise behavior of h. Therefore the results in Chapter 3 are

purely geometric (Ω is ‘close to being a ball’), and we do not discuss regularity.

1.3 Preliminaries

Because we will typically be concerned with the boundary of a domain, it will

be most convenient for us to consider the boundary to be n-dimensional and

therefore that our domains be open subsets of Rn+1.

1.3.1 Geometric Measure Theory

Definition 1. The Hausdorff distance between two nonempty sets A, B ⊂
Rn+1 is defined to be

D[A, B] = sup
a∈A

dist(a, B) + sup
b∈B

dist(b, A).

Notice that the Hausdorff distance between two closed sets A and B is zero

if and only if A = B. This notion of distance provides a metric on the class

CR of nonempty compact subsets of BR(0) ⊂ R
n+1; in fact, (CR, D) is a compact

metric space. In particular, Cauchy sequences have limits: if Ak is an infinite

sequence in C and for all ǫ > 0, D[Al, Am] < ǫ for l, m ≥ N(ǫ), then there is a

compact set A ∈ C such that D[Ak, A] → 0 as k → ∞. The proof of this fact is a

standard exercise in the theory of metric spaces.

Definition 2. The k-dimensional Hausdorff measure of a set E in Eu-

clidean space is

Hk(E) = lim
ǫց0

inf

{

∞
∑

i=1

ck(diam(Ei))
s; E ⊂

∞
⋃

i=1

Ei and 0 ≤ diam(Ei) < ǫ

}

,
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where the constants ck are chosen so that Hk agrees with k-dimensional Lebesgue

measure on Rk:

Hk(Br(0)) = rk

∫

B1(0)

dx for B1(0) ⊂ R
k.

(We will have no need here for Hausdorff measure of fractional dimension.)

We used here the diameter of a set E ⊂ Rn+1:

diam(E) = sup
X,Y ∈E

|X − Y |.

The notation Hk
xS means the measure is restricted to a set S:

(Hk
xS)(E) = Hk(S ∩ E).

Note that Hn
x∂Ω is surface measure on ∂Ω for a smooth domain in R

n+1.

Definition 3. A domain Ω ⊂ Rn+1 is said to have finite perimeter if

sup

{
∫

Ω

div φ dx; φ ∈ C1
c (R

n+1; Rn+1), |φ| ≤ 1

}

< ∞.

When ∂Ω is smooth, this supremum coincides with surface measure because

∫

Ω

div φ dx =

∫

∂Ω

φ · ~ν dHn

≤
∫

∂Ω

dHn (since |φ| ≤ 1)

= Hn(∂Ω),

and we obtain equality by choosing φ to agree with the outward unit normal

vector field ~ν along ∂Ω. An advantage of this definition is that it makes sense

for any Ω ⊂ Rn+1 – no a priori regularity need be assumed.

Definition 4. A set Ω ⊂ Rn+1 is said to have locally finite perimeter if for

each open set V ⊂ Rn+1 with compact closure, we have

sup

{
∫

V ∩Ω

div φ dx; φ ∈ C1
c (V ; Rn+1), |φ| ≤ 1

}

< ∞.
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As a consequence of the Riesz Representation Theorem, if Ω has locally finite

perimeter, there is a Radon measure µ on Rn+1 and a µ-measurable function

ν : ∂Ω → Rn+1 such that

|ν(X)| = 1 for µ − a.e.X ∈ ∂Ω, and

∫

Ω

div φ dx = −
∫

Rn+1

φ · ν dµ for all φ ∈ C1
c (R

n+1; Rn+1).

Note that this appears to be a generalization of the divergence theorem, except

that we do not yet have much information about the measure µ or its support.

Definition 5. If Ω is a set of locally finite perimeter, we say that X ∈ ∂∗Ω, the

reduced boundary of Ω, if

1. µ(Br(X)) > 0 for all r > 0,

2. limr→0

∫

−
Br(X)

σdµ = σ(X), and

3. |ν(X)| = 1,

with ν and µ as above.

By the Lebesgue-Besicovitch Differentiation Theorem (section 1.7.1 in [5],

µ(∂Ω − ∂∗Ω) = 0.

Blow-ups of the reduced boundary lead to half spaces: If X ∈ ∂∗Ω, define

Ωr = {Y ∈ R
n; r(Y − X) + X ∈ Ω}

and

H−(X) = {Y ∈ R
n+1; σ(X) · (Y − X) ≤ 0}.

Then

χΩr → χH−(X) in L1
loc(R

n+1) as r ց 0.
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(See Section 5.7.2 of [5].) Furthermore,

ν = Hn
x∂∗Ω.

This implies Hn(∂Ω ∩ K) < ∞ for each compact set K ⊂ Rn+1.

Definition 6. Let X ∈ Rn+1. We say that X ∈ ∂∗Ω, the measure theoretic

boundary of Ω, if

lim sup
rց0

Ln+1(Br(X) ∩ Ω)

rn+1
> 0

and

lim sup
rց0

Ln+1(Br(X) \ Ω)

rn+1
> 0.

Lemma 1 in section 5.8 of [5] shows that ∂∗Ω ⊂ ∂∗Ω and Hn(∂∗Ω \ ∂∗Ω) = 0.

Theorem 1 in the same section then gives the full generalization of the diver-

gence theorem: If Ω ⊂ Rn+1 has locally finite perimeter, then Hn(∂Ω ∩ K) < ∞
for each compact K ⊂ Rn+1; and, for Hn a.e. X ∈ ∂∗Ω, there is a unique

measure-theoretic unit outer normal vector νΩ(X) such that

∫

E

div φ dx =

∫

∂∗Ω

φ · νΩ dHn

for all φ ∈ C1
c (R

n+1; Rn+1).

Definition 7. A domain Ω ⊂ Rn+1 is said to be Ahlfors regular if there is a

constant A ≥ 1 such that, for all Q ∈ ∂Ω and all r ∈ (0, diam(Ω)),

rn

A
≤ Hn(∂Ω ∩ Br(Q)) ≤ Arn.

Observe that an Ahlfors regular domain has locally finite perimeter.

Definition 8. A domain Ω ⊂ Rn+1 is said to have the separation property if

for each compact set K ⊂ Rn+1 there exists R > 0 such that for Q ∈ ∂Ω ∩ K and
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r ∈ (0, R] there exists an n-dimensional plane L(Q, r) containing Q and a choice

of unit normal vector to L(Q, r), ~nQ,r, satisfying

T +(Q, r) =

{

X = x + t ~nQ,r ∈ Br(Q); x ∈ L(Q, r) and t >
1

4
r

}

⊂ Ω

and

T −(Q, r) =

{

X = x + t ~nQ,r ∈ Br(Q); x ∈ L(Q, r) and t <
1

4
r

}

⊂ Ωc.

Moreover, if Ω is an unbounded domain we also require that ∂Ω divide R
n+1 into

two distinct connected components Ω and Ωc 6= ∅.

Definition 9. Let δ > 0 be small, and let Ω ⊂ Rn+1 be a set of locally finite

perimeter. We say that Ω is a δ-Reifenberg flat chord arc domain or a

Reifenberg flat chord arc domain if

1. Ω has the separation property.

2. For each compact set K ⊂ Rn+1, there exists RK > 0 such that for every

Q ∈ K ∩ ∂Ω and every r ∈ (0, RK ],

inf
L

{

1

r
D[∂Ω ∩ Br(Q), L ∩ Br(Q)]

}

≤ δ,

where the infemum is taken over all n-planes through Q. Moreover if Ω is

unbounded we require RK = ∞.

3. ∂Ω is Ahlfors regular.

1.3.2 Harmonic Functions

Definition 10. A bounded domain Ω ⊂ Rn+1 is said to be regular for the

Dirichlet problem if, for every continuous function g ∈ C(∂Ω), there is a solu-
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tion u of the boundary-value problem


















∆u = 0 in Ω

u = g on ∂Ω

u ∈ C2(Ω) ∩ C(Ω)

(1.3)

The class of regular domains is very general (see chapter 2 of [6]). Here, ∆

is the Laplace operator: ∆u = ∂2u
∂x2

1
+ ... + ∂2u

∂x2
n+1

; solutions of ∆u = 0 are called

harmonic functions. Notice that, if u1 and u2 solve (1.3) for the boundary data

g = g1 and g = g2, respectively, then au1 +bu2 solves (1.3) for g = ag1 +bg2 (where

a and b are any constants). Harmonic functions satisfy the weak maximum

principle:

sup
X∈Ω

u = sup
X∈∂Ω

u.

They also satisfy the strong maximum principle: if u(P ) = sup∂Ω u for some

P ∈ Ω, then u is constant on the connected component of Ω containing P . We

will refer to either of these in this dissertation as a maximum principle. In

particular, they imply that, for a connected domain Ω, solutions of (1.3) are

unique. Therefore, for any P ∈ Ω, the mapping

g ∈ C(∂Ω) → u

is linear, and so for fixed P ∈ Ω,

g ∈ C(∂Ω) → u(P ) (1.4)

defines a linear functional on C(Ω). Furthermore, if we equip C(∂Ω) with the

uniform norm, ‖ g ‖= sup∂Ω |g|, then we see that (1.4) is actually a bounded

linear functional because the strong maximum principle gives us |u(P )| ≤‖ g ‖.

Consequently, the Riesz Representation Theorem (see Theorem 6.19 in [17])

tells us that there is a probability measure ωP defined on ∂Ω such that

u(P ) =

∫

g dωP . (1.5)
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Definition 11. The measure defined by (1.5) is called the harmonic measure

for Ω with pole P .

Definition 12. For n ≥ 2, the function

Φ(X) =
1

(n − 1)σn|X|n−1
(1.6)

is called the fundamental solution of ∆.

The fundamental solution satisfies ∆Φ = −δ0 in the sense of distributions,

where δY is the point mass at the point Y . That is to say, for any η ∈ C∞
c (Rn+1)

we have
∫

Rn+1

η(Y )Φ(Y ) dY = −η(0).

This last equality can be verified directly by an argument using the divergence

theorem and integration-by-parts. (See Chapter 2 of [4].) (When n = 1, the

function F (X) = ln |X| provides a fundamental solution; but in this dissertation

we will only be concerned with the case n ≥ 2.)

If Ω is regular for the Dirichlet problem and P ∈ Ω, then there is a solution

uP of the boundary-value problem



















∆uP = 0 in Ω

uP (X) = F (X − P ) for X ∈ ∂Ω

uP ∈ C2(Ω) ∩ C(Ω)

Then the function GP defined on Ω \ {P} by G(X) = F (X −P )− uP (X) satisfies

GP = 0 on ∂Ω, GP > 0 on Ω \ {P} and ∆GP = δP .

Definition 13. GP is called the Green’s function for Ω with pole at P .

We typically extend G to be a continuous function on Rn+1 \ {P} by setting

G = 0 on Ωc.



16

If Ω is a C1 domain (i.e. the boundary ∂Ω is locally the graph of a continu-

ously differentiable function), then it turns out that the normal derivative ∂GP

∂ν
,

where ν is the inward unit normal vector along Ω, provides us with a means to

write down the harmonic measure for Ω with pole at P ; then

dωP =
∂GP

∂ν
dHn

x∂Ω. (1.7)

The proof of this fact is an application of the divergence theorem.

It is important to note here that Ω need not be a C1 domain for the Green’s

function and the harmonic measure to exist. But as long as Ω is a domain for

which a general divergence theorem holds, then something like (1.7) will hold.

(See the notion of domains of locally-finite perimeter, defined above.)

Suppose now that Ω has locally finite perimeter, so that differentiation with

respect to Hn
x∂Ω makes sense. If it turns out that if ωP is absolutely contin-

uous with respect to Hn on ∂Ω, then the Lebesgue-Radon-Nikodym derivative

hP = dωP

dHn exists, is nonnegative, is Hn-measurable, is unique up to a set of

Hn-measure zero, and satisfies

dωP = hP dHn.

Definition 14. The function hP is called the Poisson kernel for Ω with pole at

P .

It satisfies

u(P ) =

∫

∂Ω

ghP dHn

for u and g as in (1.3). Because ωP is a probability measure and hP ≥ 0

∫

∂Ω

hP dHn =

∫

∂Ω

dωP = 1,

so we also have hP ∈ L1(∂Ω;Hn).
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EXAMPLE: Let Ω = BR(0) ⊂ Rn+1. Then

G(X) =
1

(n − 1)σn|X|n−1
− 1

(n − 1)σnRn−1

is a Green’s function for Ω with pole at the origin. Harmonic measure with pole

at the origin turns out to be a multiple of surface measure:

ω0(E) =
Hn(E)

Hn(∂BR(0))
.

(This is a result of the mean value theorem for harmonic functions: see Chapter

2 of [4].) The corresponding Poisson kernel is therefore constant:

hP (Q) =
1

Hn(∂BR(0))
for all Q ∈ ∂Ω.

1.3.3 Non-tangentially Accessible Domains

The notion of a (bounded) non-tangentially accessible (NTA) domain was in-

troduced in the 1982 article [9] by Jerison and Kenig. In that paper, the au-

thors generalize the classical theory of boundary behavior of harmonic func-

tions known previously for Lipschitz domains (see the 1970 article [8]). NTA

domains are much more general than Lipschitz domains, but they maintain

many of the classical properties of Lipschitz domains.

For example, it was shown by Calderon in 1950 (in [3]) that if u is a har-

monic function in R
n+1
+ which is non-tangentially bounded at every point of a

measurable set E ⊂ ∂Rn
+, then u has a non-tangential limit at almost every x

in E. In a 1961 article [18], Stein posed the question of extending these results

(and others) to the most general domains “for which non-tangential behavior

is meaningful.” Hunt and Wheeden [8] took up the challenge for Lipschitz do-

mains, and Jerison and Kenig extended the results to their even more general

NTA domains.
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Definition 15. A ball Br(X) ⊂ Ω is called M-non-tangential if

M + 1

M
r ≤ dist(X, ∂Ω) ≤ (M + 1)r.

This is equivalent to saying that M−1 ≤ d
r
≤ M , where d is the distance of

the ball Br(X) from the boundary ∂Ω.

d

P r

B

Ω

Figure 1.2: An M-non-tangential ball with center P , radius r and distance dB

from the boundary.

Suppose that Br1(P1) and Br2(P2) are M-non-tangential balls with Br1(P1) ∩
Br2(P2) 6= ∅. Then

M + 1

M
r2 ≤ d(P2, ∂Ω) ≤ |P1 − P2| + d(P1, ∂Ω) ≤ r1 + r2 + (M + 1)r1,

and thus r2 ≤ M(M + 2)r1. Switching the roles of r1 and r2 yields

1

M̃
r1 ≤ r2 ≤ M̃r1 for M̃ = M(M + 2). (1.8)

That is to say, M-non-tangential balls that meet have comparable radii, with

comparison constant M̃ .

Definition 16. If X1, X2 ∈ Ω, a Harnack chain from X1 to X2 is a collection of

M-non-tangential balls B1, ..., Bk such that X1 ∈ B1, X2 ∈ Bk and Bi ∩ Bi+1 6= ∅
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for all i = 1, ..., k − 1. The length of the chain, k, is the number of balls in the

collection.

Definition 17. A bounded domain Ω ⊂ RN is said to be non-tangentially

accessible (or NTA for short) if there exist M > 0 and r0 > 0 such that the

following conditions are satisfied:

1. (Interior Corkscrew Condition) For all Q ∈ ∂Ω and every r ∈ (0, r0)

there exists a point Ar(Q) ∈ Ω satisfying

r

M
≤ dist(Ar(Q), ∂Ω) ≤ |Ar(Q) − Q| ≤ r.

2. (Exterior Corkscrew Condition) For all Q ∈ ∂Ω and every r ∈ (0, r0)

there exists a point Ãr(Q) ∈ Ωc satisfying

r

M
≤ dist(Ãr(Q), ∂Ω) ≤ |Ãr(Q) − Q| ≤ r.

3. (Harnack Chain Condition) For every X1, X2 ∈ Ω, if

ǫ ≤ min{dist(X1, ∂Ω), dist(X2, ∂Ω)}

and

|X1 − X2| ≤ 2kǫ,

then there is a Harnack Chain in Ω from X1 to X2 of length at most Mk.

Unbounded NTA domains will be defined below.

Remarks: The definition here for bounded domains is slightly stronger

than the one given in [9]. In that article, the authors do not require that the

length of the Harnack chain be bounded by Mk, only that the length depends

on k but not ǫ. However, in the intervening years, the definition given here has

become the working definition in the field. See, for example, [10]. The points
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Ar(Q) and Ãr(Q) are called M-non-tangential points relative to Q, and the

constants M and r0 are referred to as the NTA constants of Ω Observe that

the balls B r
2M

(Ar(Q)) are 3M-non-tangential.

Q

Ω

X 1

X 2

Ω

Figure 1.3: Some non-tangential balls in an interior corkscrew, and a Harnack

Chain.

The Exterior Corkscrew Condition allows one to construct ‘barriers’ whose

existence prove that these domains are regular for the Dirichlet problem. The

other two conditions are essential to producing certain estimates about the

harmonic measures supported on the boundaries of NTA domains. In essence,

these conditions generalize the main properties of smooth and Lipschitz do-

mains which lead to doubling properties of the harmonic measure. Indeed, the

following types of bounded domains are all subsets of the class of NTA domains:

• Smooth Domains

• Lipschitz Domains

• Zygmund Domains

• Quasispheres

A quasisphere in Rn+1 is the image of B1(0) ⊂ Rn+1 under a quasi-conformal

mapping Rn+1 → Rn+1. A Zygmund domain is a domain whose boundary is
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1Ω

Q Ω2

P

Ω3

X 1 X 2

Figure 1.4: Not NTA Domains

locally the graph of a Zygmund-class function, i.e. a function in the family

Λ1(R
n) =

{

φ : R
n → R; sup

x,z∈Rn

|φ(x + z) + φ(x − z) − 2φ(x)|
|z| < ∞

}

.

Obviously C1 functions are Zygmund-class, but so are some nowhere-differentiable

functions, including the Weierstrass function

φ(x) =

∞
∑

n=1

cos (3nx)

2n
.

In order to better understand which domains are NTA, we illustrate in Fig-

ure 1.4 some domains which fail these hypotheses. The domain Ω1 fails the

Interior Corkscrew Condition at Q; Ω2 fails the Exterior Corkscrew Condition

at P ; and Ω3 fails the Harnack Chain Condition, which we see by letting X1 and

X2 get closer to each other on opposite sides of the vertex.

Non-tangentially accessible domains were developed in [9] to generalize

what was know about the behavior of harmonic functions on Lipschitz domains

due to Hunt and Wheeden [8]. We collect some of those important facts here as

the following three lemmas.

Lemma 1. Harmonic measure on an NTA domain is a doubling measure: If Ω

is NTA, X ∈ Ω and ωX is the harmonic measure for Ω with pole at X, then

ωX (B2r(Q)) ≤ CXωX(Br(Q)).
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This is proved as Lemma 4.9 in [9]. The next fact is Lemma 4.1 in [9].

Lemma 2. Positive harmonic functions that vanish continuously on the bound-

ary of an NTA domain do so in a Hölder continuous fashion: If Ω is NTA with

constants M and r0, there exists β > 0 such that for all Q ∈ ∂Ω, r < r0 and every

positive harmonic function u in Ω, if u vanishes continuously on ∂Ω∩Br(Q), then

for X ∈ Ω ∩ Br(Q),

u(X) ≤ M(|X − Q|r−1)βC(u),

where C(u) = sup{u(Y ); Y ∈ ∂Br(Q) ∩ Ω}.

The main estimate we will need when working with NTA domains is a rela-

tionship between the harmonic measure of a ball and the value of the Green’s

function nearby (Lemma 4.8 in [9]):

Lemma 3. There exists C = C(M) > 1 such that

C−1 <
ωY (Bδ(x)(Q))

δ(X)n−1GX(Y )
< C,

where ωY is harmonic measure with pole at Y , M is the NTA constant of Ω, GX

is the Green’s function for Ω with pole at X, and δ(X) = inf{|X − P |; P ∈ ∂Ω}.

1.3.4 Unbounded Domains

As mentioned previously, bounded NTA domains were introduced the the 1982

paper [9], but unbounded NTA domains were not introduced until 1999 in [11]

by Kenig and Toro. The definition is essentially the same, except we drop the

constant r0 and require the interior and exterior corkscrew conditions to hold

for all distances r from the boundary. The modification is necessary in order to

ensure a desired doubling property for the harmonic measure of unbounded Ω

and a Harnack inequality.
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Ω4Q

Figure 1.5: Not Unbounded NTA

Definition 18. An unbounded domain Ω ⊂ RN is said to be non-tangentially

accessible (or NTA for short) if there exist M > 0 such that the following con-

ditions are satisfied:

1. (Interior Corkscrew Condition) For all Q ∈ ∂Ω and every r > 0 there

exists a point Ar(Q) ∈ Ω satisfying

r

M
≤ dist(Ar(Q), ∂Ω) ≤ |Ar(Q) − Q| ≤ r.

2. (Exterior Corkscrew Condition) For all Q ∈ ∂Ω and every r > 0 there

exists a point Ãr(Q) ∈ Ωc satisfying

r

M
≤ dist(Ãr(Q), ∂Ω) ≤ |Ãr(Q) − Q| ≤ r.

3. (Harnack Chain Condition) For every X1, X2 ∈ Ω, if

ǫ ≤ min{dist(X1, ∂Ω), dist(X2, ∂Ω)}

and

|X1 − X2| ≤ 2kǫ,

then there is a Harnack Chain in Ω from X1 to X2 of length at most Mk.

The unbounded smooth domain Ω4 in Figure 1.5 is not an NTA domain be-

cause it fails the interior corkscrew condition: non-tangential balls do not have

enough room to grow proportionally to their distance from Q as that distance
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increases without bound.The complement of Ω4 would also not be NTA because

it would fail the exterior corkscrew condition.

We can also discuss Green’s functions, harmonic measures and Poisson ker-

nels for unbounded domains, except that these ideas become more complicated

since solutions of the Dirichlet problem need not be unique on unbounded do-

mains (because the maximum principle does not apply). In particular, the map

(1.4) is not well-defined, so we must be more direct.

Definition 19. Let Ω ⊂ Rn+1 be an unbounded domain. We say that a continu-

ous function G : Ω → R is a Green’s function with pole at ∞ for Ω if



















G > 0 in Ω

G = 0 on ∂Ω

∆G = 0 in Ω

Definition 20. If Ω has locally finite perimeter, an associated Poisson kernel

for Ω with pole at ∞ is a function h on ∂Ω such that for all φ ∈ C∞
c (Rn+1) we

have

∫

Rn+1

G∆φ dx =

∫

∂Ω

φh dHn.

Example: Let Ω = {(x′, xn+1) ∈ R
n+1; xn+1 > 0}; let G(x′, xn+1) = c max{xn+1, 0}

for any positive constant c; and set h = c on ∂Ω. Then G is a Green’s function

for Ω with pole at ∞ and h is an associated Poisson kernel, as the following

application of the divergence theorem shows:
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∫

Rn+1

G∆φ dx =

∫

{xn+1>0}

cxn+1div (∇φ) dx

=

∫

{xn+1>0}

div (cxn+1∇φ) dx −
∫

{xn+1>0}

〈∇cxn+1,∇φ〉 dx

=

∫

∂{xn+1>0}

〈cxn+1∇φ, ν〉 dHn −
∫

{xn+1>0}

〈c∇xn+1,∇φ〉 dx

= 0 −
∫

{xn+1>0}

div (φ∇cxn+1) dx +

∫

{xn+1>0}

φdiv (c∇xn+1) dx

= −
∫

∂{xn+1>0}

〈φ∇cxn+1, ν〉 dx +

∫

{xn+1>0}

φc∆xn+1 dx

= −
∫

∂{xn+1>0}

〈φ∇cxn+1,−en+1〉 dx + 0

=

∫

∂{xn+1>0}

φh dHn.

In the surface integrals above, ν represents an outward-pointing unit nor-

mal vector on the stated boundary.

Unbounded NTA domains always admit Green’s functions with pole at ∞ –

they are constructed as scaled limits of Green’s functions with finite poles that

tend to infinity (see [11]).

As the previous example shows, unlike Green’s functions on bounded do-

mains, Green’s functions with pole at ∞ are not unique; however, on unbounded

NTA domains they differ only by scalar multiplication: G and G̃ are Green’s

functions with pole at ∞ for an unbounded NTA domain Ω if and only if G = cG̃

for some c > 0. Moreover, the Poisson kernel is unique up to a set of Hn-

measure zero for a given Green’s function whenever it exists, as it does when Ω

is Ahlfors regular. For these reasons, authors sometimes refer to these objects

as the Green’s function and the Poisson kernel. See [11] for full details of the

existence and uniqueness up to scalar multiplication for unbounded, Ahlfors

regular NTA domains.
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Chapter 2

AN UNBOUNDED GENERALIZATION

OF LEWIS AND VOGEL

In this chapter, we begin with a hypothesis that says the boundary of a

domain is ‘flat’ at one point at all large scales, and we then prove that that

boundary is ‘flat’ everywhere at large scales. Then the domain is assumed to be

unbounded and NTA and to admit a positive harmonic function that vanishes

linearly at the boundary, and we show that the boundary is also ‘flat’ at all

small scales.

2.1 Definitions

We define the following quantity to measure how much the boundary of a do-

main Ω differs from a plane near a point Q:

Definition 21. Let

Θ(Q, r) =
1

r
inf
L∋Q

D[∂Ω ∩ Br(Q), L ∩ Br(Q)],

the infemum being taken over all planes L containing Q.

When Θ(Q, r) is small, we think of ∂Ω as being ‘flat’ at Q at the scale r.

There is another notion of ‘flatness’ that will allow us to use the theory of

partial differential equations to make estimates. It requires us to use proper-

ties of a Green’s function for the domain Ω. The idea is due to Alt and Caffarelli

(see [2]).
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Definition 22. For Ω ⊂ Rn+1, Q0 ∈ ∂Ω, ρ > 0 and σ+, σ−, τ > 0, we say that a

Green’s function G on Ω satisfies

G ∈ F (σ+; σ−; τ) in Bρ(Q0) in the direction ν

if

G(X) = 0 for X ∈ Bρ(Q) with 〈X − Q0, ν〉 ≥ σ+ρ, (2.1)

G(X) ≥ −h(Q0)[〈X−Q0, ν〉+σ−ρ] for X ∈ Bρ(Q) with 〈X−Q0; ν〉 ≤ −σ−ρ, (2.2)

and

lim sup
X→Q∈∂Ω∩Bρ(Q0)

|∇G(X)| ≤ (1 + τ) and h(Q) > (1 − τ) for Q ∈ ∂Ω ∩ Bρ(Q0) (2.3)

for an associated Poisson kernel h.

We will refer to this notion later as F-flatness when we wish to distinguish

it from the concept in definition 21, which we will call Θ-flatness.

It is immediate that, if G ∈ F (σ+; σ−; τ) in the ball Bρ(Q0) in the direction

ν, then G ∈ F (2σ+; 2σ−; τ) in the ball B ρ
2
(Q0) in the direction ν. The content

of several of the lemmas later in this discussion will be refinements of this

statement when G has certain properties. The relationship between the two

notions of ‘flatness’ discussed here is illustrated in Figure 1.

If L is the plane through Q normal to ν and G ∈ F (σ+; σ−; τ) in Bρ(Q) in the

direction ν, then Θ(Q, ρ) ≤ max{σ+; σ−}. Going from Θ-flatness to F -flatness

however requires an additional separation property.

Definition 23. Let Ω ⊂ Rn+1 be an unbounded domain. We say that Ω has the

exterior separation property at large scales if there exists R > 0 such that

for each r > R and Q ∈ ∂Ω there is n-dimensional plane L(Q, r) containing Q

and a choice of unit vector e(Q, r), normal to L(Q, r), satisfying
{

X = (x, t) = x + te(Q, r) ∈ B(Q, r) : x ∈ L(Q, r), t >
1

4
r

}

⊂ Ωc. (2.4)
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B  (Q)r

rε

L  (Q)r

Ωc

Q

Ω

L  (Q)r

Ωc

σ  ρ+

B  (Q)ρ

rσ−

rσ+

Q

Ω

G=0

G > −h(Q)[<X−Q,   >+      ]ν

Figure 2.1: In the first graphic, Θ(Q, r) = ǫ. In the second graphic, G ∈
F (σ+; σ−; τ).

The coefficient 1
4

in this definition is not special: any coefficient in the open

interval (0, 1) would serve our purposes, but we fix it here for convenience.

Proposition 1. Let Ω ⊂ Rn+1 satisfy the exterior separation property at large

scales. Let v be a Green’s function on Ω with lim supX→Q∈∂Ω |∇v| ≤ 1 + τ , and

suppose the associated Poisson kernel satisfies h > 1− τ . Assume also that there

is a hyperplane L through Q ∈ ∂Ω satisfying

D[L ∩ Br(Q), ∂Ω ∩ Br(Q)] < δr

for some δ < 1
4

and r sufficiently large. Then v ∈ F (δ; 1; τ) in Br(Q) in the

direction ν, where ν is perpendicular to L.

Proof: Let ν be a unit vector perpendicular to L. Because D[L∩Br(Q), ∂Ω∩
Br(Q)] < δr, we see that

∂Ω ∩ Br(Q) ⊂ {X ∈ Br(Q);−δr ≤ 〈X − Q, ν〉 ≤ δr}.

Let L(Q, r) be the plane and e(Q, r) the unit vector guaranteed by the exterior

separation property. Then we see that

{X ∈ Br(Q); |〈X − Q, ν〉| ≥ δr}
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and
{

X = x + te(Q, r) ∈ B(r, Q); x ∈ L(Q, r) and t ≥ 1

4
r

}

have a nonempty intersection. Let Y be a point in this intersection, and if it

turns out that 〈Y − Q, ν〉 < 0, replace ν by −ν; thus by connectivity we have

{X ∈ Br(Q); 〈X − Q, ν〉 ≥ δr} ⊂ Ωc.

Consequently, the Green’s Function for Ω is zero on this set, which tells us that

(2.1) is satisfied with σ+ = δ. The condition (2.2) is vacuously true when σ− = 1.

The other hypotheses of this proposition guarantee the conditions in (2.3) are

met, so we are finished.

2.2 Lemmas

Lemma 4. Suppose that 0 ∈ ∂Ω and

lim inf
r→∞

Θ(0, r) < δ

for some sufficiently small δ > 0. Then for all Q ∈ ∂Ω we have

lim inf
r→∞

Θ(Q, r) < 16δ.

Proof: The hypothesis tells us that there is an increasing sequence rj ր ∞
such that

Θ(0, rj) < δ.

Fix Q ∈ ∂Ω and select J ∈ N such that rj > 2|Q| for j ≥ J . Let Lj be a plane

through 0 with unit normal nj and such that

1

rj
D[∂Ω ∩ Brj

(0); Lj ∩ Brj
(0)] < δ.

Let

LQ
j = Lj + eQ
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where eQ = 〈Q, nj〉nj . Note that Lj + eQ = Lj + Q and |eQ| < δrj .

We will show that this plane satisfies the required estimates involving Haus-

dorff distance. There are two steps to that argument.

Step 1: First we show that LQ
j ∩ Brj/2(Q) is not too far from ∂Ω ∩ Brj/2(Q).

Let X ∈ LQ
j ∩ Brj/2(Q). Then there exists X ′ ∈ LQ

j ∩ B (1−4δ)rj
2

(Q) such that

|X − X ′| < 2δrj.

Set X ′′ = X ′ − eQ, so that X ′′ ∈ Lj . Also,

|X ′′| ≤ |X ′′ − Q| + |Q|

≤ |X ′′ − X ′| + |X ′ − Q| + |Q|

< δrj +
(1 − 4δ)rj

2
+

rj

2

< rj.

Thus X ′′ ∈ L ∩ Brj
(0). Hence there exists Y ∈ ∂Ω ∩ Brj

(0) such that

|X ′′ − Y | < δrj .

Therefore

|Y − X| ≤ |Y − X ′′| + |X ′′ − X ′| + |X ′ − X|

< δrj + δrj + 2δrj

= 4δrj,

and

|Y − Q| ≤ |Y − X ′′| + |X ′′ − X ′| + |X ′ − Q|

< δrj + δrj +
(1 − 4δ)rj

2

=
rj

2
.
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That is to say,

Y ∈ ∂Ω ∩ Brj/2(Q)

and

|Y − X| < 4δrj .

This proves that

sup
X∈LQ

j ∩Brj/2(Q)

dist(X, ∂Ω ∩ Brj/2(Q)) < 4δrj .

Step 2: Next we show that ∂Ω ∩ Brj/2(Q) is not too far from LQ
j ∩ Brj/2(Q).

Let X ∈ ∂Ω ∩ Brj/2(Q). Then there exists Y ∈ L ∩ Brj
(0) such that

|X − Y | < δrj.

Let Y ′ = Y + eQ. Then Y ′ ∈ LQ
j ∩ Brj

(0) and

|X − Y ′| ≤ |X − Y | + |Y − Y ′|

< δrj + δrj

= 2δrj .

Note that

|Y ′ − Q| ≤ |Y ′ − X| + |X − Q|

< 2δrj +
rj

2
.

Then there exists Y ′′ ∈ LQ
j ∩ Brj/2(Q) such that

|Y ′′ − Q| <
rj

2

and

|Y ′′ − Y ′| < 2δrj.
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Hence

|Y ′′ − X| ≤ |Y ′′ − Y ′| + |Y ′ − X|

< 2δrj + 2δrj

= 4δrj.

That is to say,

Y ′′ ∈ LQ
j ∩ Brj/2(Q)

and

|Y ′′ − X| < 4δrj.

This proves that

sup
X∈∂Ω∩Brj/2(Q)

dist(X, LQ
j ∩ Brj/2(Q)) < 4δrj,

completing Step 2. Putting together the results of Step 1 and Step 2 yields

D[∂Ω ∩ Brj/2(Q); LQ
j ∩ Brj/2(Q)] < 8δrj.

Consequently,

1

(rj/2)
D[∂Ω ∩ Brj/2(Q); LQ

j ∩ Brj/2(Q)] < 16δ.

This holds for all j such that rj > 2|Q|, and Q ∈ ∂Ω was chosen arbitrarily.

Therefore, for all Q ∈ ∂Ω, we have

lim inf
r→∞

Θ(Q, r) < 16δ.

Lemma 5. Let Ω ⊂ Rn+1 be unbounded and NTA, let v be a Green’s function for

Ω with pole at ∞, and suppose that the corresponding Poisson kernel h satisfies

h > 1−τ . Let Z ∈ ∂Ω and assume there exists a ball B ⊂ Ωc so that Z ∈ ∂Ω∩∂B.

Then

lim sup
X→Z,X∈Ω

v(X)

dist(X, B)
≥ 1 − τ.
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Proof: Let

l = lim sup
X→Z,X∈Ω

v(X)

dist(X, B)
.

There exists a sequence Yk ∈ Ω such that Yk → Z and
v(Yk)

dist(Yk ,B)
→ l as k → ∞.

let dk = dist(Yk, B). Then there exists Xk ∈ ∂Ω such that dk = |Yk − Xk|. Define

vk(X) =
v(dkX + Xk)

dk

for X ∈ B2(0). Define Zk = Yk−Xk

2
.

By passing to a subsequence, we may assume that as k → ∞ we have

Zk → e with |e| = 1;

vk → v∞ in C0,β
loc (Rn+1);

∇Vk → ∇v∞ weakly star in L1
loc(R

n+1) and weakly in L2
loc(R

n+1);

1

dk
(∂Ω − Xk) = ∂{vk > 0} → ∂{v∞ > 0}

(in the Hausdorff distance sense, uniformly on compact sets); and

χ{vk>0} → χ{v∞>0} in L1
loc(R

n+1).

Note that vk(Zk) = v(Yk)
dk

, so vk(Zk) → l as k → ∞. Also, because vk converges

uniformly to v∞ on B2(0), we obtain v∞(e) = l.

Our goal is to show that Ω∞ = {v∞ > 0} is a half space, and that v is linear.

Let r be the radius of the ball B.

Let Lk be the tangent plane to B through Xk, and let αk = D[∂Bdk
(Xk) ∩

∂B, Lk ∩ B]. Observe that αk = 2
d2

k

r
. Fix

Pk ∈
{

P ∈ Bdk
(Xk);

〈

P − Xk,
Yk − Xk

dk

〉

< −αk

}

.

If Qk = Pk−Xk

dk
, then Qk ∈

{

Q ∈ B2(0); 〈Q, Zk〉 < −dk

r

}

, and vk(Qk) ≤ 0. Passing to

the limit as k → ∞, we conclude that if Y ∈ B2(0) and 〈Y, e〉 ≤ 0 then v∞(Y ) = 0.
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Let Y ∈ B2(0) satisfy 〈Y, Zk〉 > 0; then either dkY + Xk ∈ Ωc and Vk(Y ) = 0 or

dkY + Xk ∈ Ω and, given ǫ > 0, there exists k0 ∈ N such that for k ≥ k0,

v(dkY + Xk)

dist(dkY + Xk, B)
≤ l + ǫ

and

v(dkY + Xk) ≤ (l + ǫ)dist(dkY + Xk, B)

≤ (l + ǫ)

{〈

dkY,
Yk − Xk

dk

〉

+ 2
d2

k

r

}

≤ (l + ǫ)dk

{

〈Y, Zk〉 + 2
dk

r

}

,

which implies

vk(Y ) =
vk(dkY + Xk)

dk
≤ (l + ǫ)

{

〈Y, Zk〉 + 2
dk

r

}

.

Letting k → ∞, we see, for Y ∈ B2(0) with 〈Y, e〉 ≥ 0, that v∞(Y ) ≤ (l+ǫ)〈Y, e〉 for

every ǫ > 0; thus v∞(Y ) ≤ l〈Y, e〉. Moreover, v∞(e) = l. The maximum principle

guarantees that v∞(Y ) = l max {〈Y, e〉, 0} for all Y ∈ B(0, 1).

If hk(X) = h(dkX + Xk), for η ∈ C∞
c (B1(0)), η > 0, then as k → ∞ we have

∫

∂{vk>0}

ηhkdHn =

∫

Rn+1

∇vk · ∇η → −
∫

Rn+1

∇v∞ · η =

∫

{〈Y,e〉=0}

lηdHn,

thus

lim
k→∞

∫

∂{vk>0}

ηhkdHn =

∫

{〈Y,e〉=0}

lηdHn. (2.5)

On the other hand, the divergence theorem gives us

∫

∂{vk>0}

ηdHn ≥
∫

∂{vk>0}

ηe · νkdHn =

∫

{vk>0}

div(ηe).

As k → ∞, we get
∫

{vk>0}

div(ηe) →
∫

{v∞>0}

div(ηe)

=

∫

∂{v∞>0}

ηdHn

=

∫

{〈Y,e〉=0}

ηdHn.
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Therefore

lim inf
k→∞

∫

∂{vk>0}

ηdHn ≥
∫

{〈Y,e〉=0}

ηdHn.

Then because the Poisson kernel h is at least 1 − τ for a.e. Q ∈ ∂Ω, we obtain

lim
k→∞

∫

∂{vk>0}

hkηdHn ≥ (1 − τ) lim
k→∞

∫

∂{vk>0}

ηdHn,

and together with (2.5) this implies

l

∫

{〈Y,e〉=0}

ηdHn ≥ (1 − τ)

∫

{〈Y,e〉=0}

ηdHn

for any η ∈ C∞
c (B1(0)). Therefore

l ≥ 1 − τ.

Lemma 6. Let Ω ⊂ Rn+1 be unbounded and NTA; let v be a Green’s function

for Ω with pole at ∞. There exist δn > 0 and τn depending only on n so that

for δ ∈ (0, δn) and τ ∈ (0, τn), if v ∈ F (σ; 1; τ) in Bρ(Q0) in the direction ν, then

v ∈ F (2σ; Cσ; τ) in B ρ
2
(Q0) in the direction ν. The constant C here depends only

on n.

Proof:

Without loss of generality, assume Q0 = 0 ∈ ∂Ω, ρ = 1 and ν = en+1. Define

η : Rn → R by

η(y) =







exp
(

−9|y|2

1−9|y2

)

for |y| < 3

0 otherwise
.

(The precise choice of test function here isn’t important – we just need to fix

one since some constants will depend upon it.) Let

D = {X ∈ B1(0); xn+1 < 2σ − sη(x)},
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where X = (x, xn+1) ∈ Rn+1. Choose s0 to be the maximum s so that

B1(0) ∩ {v ≥ 0} ⊂ D.

Since 0 ∈ ∂Ω = ∂{v > 0}, we see that 2σ − s0 ≥ 0, so s0 ≤ 2σ.

Since v ∈ F (σ; 1; τ) in B1(0) in the direction en+1, there exists Z ∈ ∂D ∩ ∂Ω ∩
B 1

3
(0). Note that ∂D ∩ B1(0) is smooth. Let B ⊂ Dc be a tangent ball to D at

Z; because of our chose of η and the fact s0 ≤ 2σ ≤ 2σn, which is small, we may

take the radius of B to be a constant Cn.

Define a function V by

D =



















∆V = 0 in D

V = 0 on ∂D ∩ B1(0)

V = 2σ − xn+1 on ∂D \ B1(0)

.

By the maximum principle, V > 0 in D. Also, we see that v ≤ V on ∂D because

v ∈ F (σ; 1) in B1(0) in the direction en+1. Thus the maximum principle also tells

us v ≤ V in D, since v is subharmonic. We also have

lim sup
X→Z,X∈Ω

v(X)

dist(X, B)
≤ ∂V

∂~n
(Z), (2.6)

where ~n denotes the inward unit normal vector to ∂D.

For X ∈ D define F (X) = (2σ − xn+1) − V (X). Then F is harmonic on D,

continuous on D and 0 ≤ F ≤ s0 on ∂D; hence the maximum principle says

0 ≤ F ≤ s0 on D.

Since Z is a smooth point of ∂D, standard boundary regularity arguments

(see section 6.2 of [6]) ensure that

sup
X∈D

|∇F (X)| ≤ C sup
D

|F | ≤ Cs0 ≤ Cσ.

Therefore
∂V

∂xn+1
(Z) = −1 − ∂F

∂xn+1
(Z) ≥ −(1 + Cσ).
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Consequently,

∂V

∂~n
(Z) = 〈∇V (Z), ~n〉

= 〈∇V (Z), ~n + en+1〉 −
∂V

∂xn+1

≤ |∇V (Z)||~n + en+1| + (1 + Cσ)

≤ (1 + Cσ)|~n + en+1| + (1 + Cσ).

Near Z, ∂D is a graph of a vertical translation of η, so we can calculate the

inward normal vector there:

~n(Z) =

(

s∇η(x)
√

1 + s2|∇η(x)|2
,

−1
√

1 + s2|∇η(x)|2

)

.

This yields |~n + en+1| ≤ Cσ, with C = C(n).

Putting this together with (2.6), we have

lim sup
X→Z,X∈Ω

v(X)

dist(X, B)
≤ ∂V

∂~n
(Z) ≤ 1 + Cσ.

Together with Lemma 5, this gives us

1 − τ ≤ lim sup
X→Z,X∈Ω

v(X)

dist(X, B)
≤ 1 + Cσ.

Next let ξ ∈ ∂B 3
4
(0) ∩ {xn+1 < −1

2
}, and let ωξ satisfy the equation



















∆ωξ = 0 in D \ B 1
8
(ξ)

ωξ = 0 on ∂D

ωξ = −xn+1 on ∂B 1
8
(ξ)

.

The Hopf boundary point lemma (see Lemma 3.4 in [6]) ensures that for

some C̃ = C̃(n),
∂ωξ

∂~n
(Z) ≥ C̃ > 0.

Suppose d > 0 and that for every X ∈ B 1
8
(ξ) we get

v(X) ≤ V (X) + σdxn+1.
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Then by the maximum principle, we have

v(X) ≤ V (X) − σdωξ(X) on D \ B 1
8
(ξ).

Consequently,

1 − τ ≤ ∂V

∂~n
(Z) − σd

∂ωξ

∂~n
(Z) ≤ 1 + Cσ − C̃σd.

Therefore

−τ ≤ Cσ − C̃σd,

so

C̃σd ≤ Cσ + τ,

or

d ≤ C

C̃
+

τ

σ
.

That is to say, if d > C
C̃

+ τ
σ
, then there exists Xξ ∈ B 1

8
(ξ) for which

v(Xξ) ≥ V (Xξ) + σd (Xξ)n+1 .

Let X ∈ B 1
4
(Xξ), and recall that V (X) ≥ −xn+1. Then

v(X) ≥ v(Xξ) − sup
B 1

4
(ξ)

|∇v||X − Xξ|

≥ V (Xξ) + σd(Xξ)n+1 −
1

4
(1 + τ)

≥ −(Xξ)n+1 + σd(Xξ)n+1 −
1

4
− τ

4

≥ 3

8
− 7

8
σd − 1

4
− τ

4

=
1

8
− 7

8
σd − τ

4

≥ 1

8
− 7

8

(

σ
C

Cn
+ τ

)

− τ

4
.

Thus if σ and τ are sufficiently small, we have

v(X) >
1

16
> 0.
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This tells us that v is harmonic on B 1
4
(Xξ), and so is V − v. Furthermore, we

have V − v > 0 on B 1
4
(Xξ) ⊃ B 1

8
(ξ), so Harnack’s inequality yields

(V − v)(ξ) ≤ Cn(V − v)(Xξ) ≤ −Cσd(Xξ)n+1 ≤ Cσ,

and

v(ξ) ≥ V (ξ) − Cσ ≥ −ξn+1 − Cσ.

For X ∈ D ∩ B 1
2
(0) there is a ξ ∈ ∂B 3

4
(0) and a t > 0 such that X = ξ + ten+1.

Then

v(X) = v(ξ + ten+1)

≥ v(ξ) − t

≥ −(ξn+1 + t) − Cσ.

Since v ∈ F (σ; 1; τ) in B1(0) in the direction en+1, the last inequality proves

v ∈ F (2σ; Cσ; τ) in B 1
2
(0) in the direction en+1.

Notation: For y ∈ Rn, define B′
r(y) = {(x ∈ Rn; |x − y| < r}. In particular,

B′
r = B′

r(0). (The point is that our usual ambient space is Rn+1, and we wish to

distinguish balls in that space from balls in R
n.)

Lemma 7. Let Ω ⊂ Rn+1 be unbounded and NTA, and let v be a Green’s function

for Ω with pole at ∞. Suppose that Qj ∈ ∂Ω with Qj → Q∞ and σj ց 0, and that

v ∈ F (σj; σj ; τ) in Bρj
(Qj) in the direction νj .

Let Rj be the rotation that maps

{(x′, xn+1) ∈ R
n+1; xn+1 ≥ 0} to {X + tνj ∈ R

n+1; 〈X, νj〉 = 0 and t ≥ 0}.

Define

vj(X) =
1

ρj
v(ρjRjX + Qj) (2.7)
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and for y ∈ B′
1

f+
j (y) = sup{h; (y, σjh) ∈ ∂{vj > 0}}, f−

j (y) = inf{h; (y, σjh) ∈ ∂{vj > 0}}.

Then there exists a subsequence of indices kj such that

lim sup
j→∞, z→y

f+
kj

(z) = lim inf
j→∞, z→y

f−
kj

(z). (2.8)

Let f(y) denote the function defined by (2.8). Then f is continuous in B′
1, it

satisfies f(0) = 0, and f+
kj

and f−
kj

converge uniformly to f on compact subsets of

B′
1.

Proof: Let Dj = {(y, a) ∈ Rn+1; (y, σja) ∈ ∂{vj > 0} ∩ B1}. Note that 0 ∈ Dj .

Also, because

vj ∈ F (σj ; σj; τ) in B1 in the direction ~en+1,

we see that the scalars a in the definition of Dj are in the interval [−1, 1], so

Dj ⊂ B2. Furthermore, we see that B′
1 ⊂ {x′; (x′, xn+1) ∈ Dj}. We can pass to

a subsequence such that Dj converges to a set D∞ in the Hausdorff distance

sense, and D∞ ⊂ B2.

For y ∈ B′
1, let Ay =

{

{yj}∞j=1 ⊂ B′
1; limj→∞ yj = y

}

. Define a function f on B′
1

by

f(y) = sup
{yj}∈Ay

lim sup
j→∞

f+
j (yj).

We will show that f(y) is the quantity on both sides of equation (2.8).

Step 1: “f is upper-semicontinuous.”

Let zl ∈ B′
1 satisfy zl → z ∈ B′

1. We want to show that lim supl→∞ f(zl) ≤ f(z).

W.L.O.G. we may pass to a subsequence for which liml→∞ f(zl) exists and equals

the limit superior of the original sequence. Fix ǫ > 0 and choose {zk
l }∞k=1 ∈ Azl

such that

f(zl) − ǫ < lim sup
k→∞

f+
k (zk

l ).
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There is a diagonal-like subsequence {zki

li
}∞i=1 such that

zki
li
→ z and f+

ki
(zki

li
) ≥ f(zli) − ǫ.

Therefore

lim inf
i→∞

f−
ki

(zki
li

) ≥ f(z).

Thus f(z) > lim supi→∞ f(zli) − ǫ = limi→∞ f(zli) − ǫ, and letting ǫ → 0 gives us

the desired inequality.

Step 2: “Upper-semicontinuity implies some flatness.”

Fix y ∈ B′
1, and choose yk ∈ B′

1 so that limk→∞ yk = y and limk→∞ f+
k (yk) =

f(y). For x ∈ B′
1, (x, f(x)) ∈ D∞, so for ǫ > 0 there exists δǫ > 0 so that, for

δ ∈ (0, δǫ),

D∞ ∩ {(x′, xn+1); x
′ ∈ B′(y, 2δ) and xn+1 > f(y) + ǫ} = ∅.

Then because {Dk} converges to D∞ in the Hausdorff-distance sense on com-

pact subsets of B′, we have that for sufficiently large k,

Dk ∩ {(x′, xn+1); x
′ ∈ B′

δ(y) and xn+1 > f+
k (yk) + ǫ} = ∅.

That is to say, if (x, xn+1) ∈ B′
δ(yk)× [σkf

+
k (yk)+σkǫ,∞) then v(x′, xn+1) = 0. This

implies that, for some τ ,

vk ∈ F (
σkǫ

δ
; 1; τ) in Bδ(yk, σkf

+
k (yk)) in the direction ~en+1.

Now by Lemma 6 we get for k large that

vk ∈ F (2
σkǫ

δ
; C

σkǫ

δ
; τ) in B δ

2
(yk, σkf

+
k (yk)) in the direction ~en+1. (2.9)

Step 3: “Flatness lets us control lim inf f−
k .”

Now we see that if z ∈ B′
δ
4

(yk) and σkh < σkf
+
k (yk) − C ǫσk

δ
δ = σkf

+
k (yk) − Cǫσk

then

f−
k (z) ≥ f+

k (yk) − Cǫ for z ∈ B′
δ
4

(yk). (2.10)
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Let {zk} be any sequence in B′
1 such that limk→∞ zk = y. There exists k0 ≥ 1 so

that for k ≥ k0, zk ∈ B′
δ
4

(yk), and by the inequality (2.10)

f−
k (zk) ≥ f+

k (yk) − Cǫ.

Letting k → ∞, then ǫ → 0, and using the fact that f+
k (yk) → f(y) as k → ∞, we

conclude that

lim inf
k→∞

f−
k (z) ≥ f(y).

Since the sequence {zk} tending to y was arbitrary, this gives us equation (2.8).

Note in particular that, because the constant sequence {y, y, y, ...} also tends

to y, we get

f(y) = lim inf
j→∞,z→y

f−
kj

(z) ≤ lim inf
j→∞

f−
kj

(y) ≤ lim sup
j→∞

f−
kj

(y)

≤ lim sup
j→∞

f+
kj

(y) ≤ lim sup
j→∞,z→y

f+
kj

(z) = f(y),

so

lim
j→∞

f−
kj

(y) = f(y). (2.11)

Similarly,

lim
j→∞

f+
kj

(y) = f(y). (2.12)

Step 4: “Continuity”

We need to show that f is lower semicontinuous. Let zl ∈ B′
1 satisfy zl →

z ∈ B′
1. We want to show that lim inf l→∞ f(zl) ≥ f(z). Similar to what we did in

Step 1, we pass to a subsequence for which liml→∞ f(zl) exists and equals the

limit inferior of the original sequence. Fix ǫ > 0 and choose {zk
l }∞k=1 ∈ Azl

such

that

f(zl) + ǫ ≥ lim inf
k→∞

f−
k (zk

l ).
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(This can be achieved now because (2.8) is valid.) There is a diagonal-like sub-

sequence {zki
li
}∞i=1 such that

zki
li
→ z and f−

ki
(zki

li
) ≤ f(zli) + ǫ.

By the definition of f we have

f(z) ≤ lim inf
j→∞,z̃→z

f−
kj

(z̃) ≤ lim inf
i→∞

f−
ki

(zki
li

).

Thus f(z) ≤ lim inf i→∞ f(zli) + ǫ = limi→∞ f(zli) + ǫ, and letting ǫ → 0 gives us

the desired inequality.

Step 5: “f(0) = 0”

This result is immediate because 0 ∈ ∂{vk > 0} implies

f−
k (0) ≤ 0 ≤ f+

k (0)

for all k; therefore f(0) = 0 according to (2.8).

Step 6: “Uniform convergence on compact sets”

Here we will use a flatness condition to help argue for uniform convergence

on small balls.

Let K ⊂ B′ be compact. Since f is continuous, it is uniformly continuous on

compact sets K, so that given ǫ > 0 there exists δ > 0 such that

|f(x) − f(y)| <
ǫ

4
for |x − y| < δ, x, y ∈ K. (2.13)

Then there exists δǫ > 0 such that equation (2.9) can be written as

vk ∈ F (4
σkǫ

δ
; 2C

σkǫ

δ
; τ) in Bδ(y, σkf

+
k (yk)) in the direction ~en+1 (2.14)

for δ < δǫ and k ≥ k(y, ǫ). By compactness, K can be covered by finitely many

balls {B′
δl
2

(yl)}N
l=1 with

B′
δl
2

(yl) ⊂ B′, δl < δ0
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and such that, for δ < δl, (2.14) is satisfied for y = yl, k ≥ k(l, ǫ). For each

l = 1, ..., N we have

f(yl) = lim
j→∞

f+
kj

(yl) = lim
j→∞

f−
kj

(yl),

so there exists j0 ≥ 1 such that, for j ≥ j0 and l = 1, ..., N ,

|f+
kj

(yl) − f(yl)| < ǫ and |f−
kj

(yl) − f(yl)| < ǫ (2.15)

and

vkj
∈ F (4

σkj
ǫ

δ
; 2C

σkj
ǫ

δ
; τ) in Bδl

(yl, σkj
f+

kj
(yk)) in the direction ~en+1.

This flatness condition implies that for z ∈ Bδl
(yl, σkj

f+
kj

(yl)),

|f+
kj

(z) − f+
kj

(yl)| ≤ Cǫ. (2.16)

Then since K ⊂ ⋃N
l=1 B′

δl
2

(yl) we have for j ≥ j0

|f+
kj

(z) − f(z)| ≤ |f+
kj

(z) − f+
kj

(yl)| + |f+
kj

(yl) − f(yl)| + |f(yl) − f(z)|

≤ Cǫ + ǫ +
ǫ

4
.

where l is chosen so that z ∈ B′
δ
2

(yl). This gives uniform convergence of the

sequence {f+
kj
}, and the calculation for {f−

kj
} is the same.

Lemma 8. Let v satisfy the hypotheses of Lemma 7. Also suppose that τjσ
−2
j → 0

as j → ∞. Then the function f introduced in Lemma 7 is subharmonic in B′.

The additional hypothesis in this lemma should never really be satisfied. It

is part of the negation of the conclusion of Lemma 11 below which will be proved

by contradiction; this result, and the ones that follow, are key ingredients in

that argument.

To accompany the blow-up of the Green’s function in (2.7), we also blow-up

the Poisson kernel: define

hk(Q) = h(ρkRkQ + Qk). (2.17)
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Proof: Assume, to get a contradiction, that f is not subharmonic in B′.

Then there exists y0 ∈ B′ and ρ > 0 so that B′
ρ(y0) ⊂ B′ and

f(y0) >

∫

−
∂B′

ρ(y0)

f(x) dHn−1.

Let

ǫ0 =
1

2

[

f(y0) −
∫

−
∂B′

ρ(y0)

f(x) dHn−1

]

.

Let g be the solution to the Dirichlet problem







∆g = 0 in B′
ρ(y0)

g = f + ǫ0 on ∂B′
ρ(y0)

.

Then

f < g on ∂B′
ρ(y0),

g(y0) =

∫

−
∂B′

ρ(y0)

g(x)dHn−1 =

∫

−
∂B′

ρ(y0)

f(x) dHn−1 + ǫ0,

g(y0) =
1

2

{

f(y0) +

∫

−
∂B′

ρ(y0)

f(x) dHn−1

}

,

and

g(y0) < f(y0).

Summarizing, we have



















∆g = 0 in B′
ρ(y0)

g > f in ∂B′
ρ(y0)

g(y0) < f(y0)

. (2.18)

Let Z = B′
ρ(y0) × R. For φ defined on Rn write

Z+(φ) = {(y, h) ∈ Z; h > φ(y)}

Z−(φ) = {(y, h) ∈ Z; h < φ(y)}

Z0(φ) = {(y, h) ∈ Z; h = φ(y)}.
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By adding an arbitrarily small constant γ to g if necessary, we may assume

that, for k sufficiently large,

Hn(Z0(σkg) ∩ ∂{vk > 0}) = 0,

while g still satisfies (2.18) and

g(y0) =

∫

−
∂B′

ρ(y0)

g(x) dHn−1 =

∫

−
∂B′

ρ(y0)

f(x) dHn−1 + ǫ0 + γ.

Claim 1: For k sufficiently large,

Hn(Z+(σkg) ∩ ∂{vk > 0}) ≤ 1 + τk

1 − τk

Hn(Z0(σkg) ∩ {vk > 0}).

Claim 2: Let Ek = {vk > 0}∩Z−(σkg). Ek is a set of locally finite perimeter and

Hn(Z ∩ ∂∗Ek) ≤ Hn(∂{vk > 0} ∩ Z+(σkq)) + Hn({vk = 0} ∩ Z0(σkg)).

Here ∂∗Ek denotes the reduced boundary of Ek.

Claim 3: There exists a constant C > 0 such that

Hn(Z ∩ ∂∗Ek) ≥ Hn(Z0(σkg)) + Cσ2
kρ

n.

We can use these three claims to obtain the desired contradiction as follows.

Hn(Z0(σkg)) + Cσ2
kρ

n ≤ Hn(Z ∩ ∂∗Ek)

≤ Hn(∂{vk > 0} ∩ Z+(σkq)) + Hn({vk = 0} ∩ Z0(σkg))

≤ 1 + τk

1 − τk

Hn(Z0(σkg) ∩ {vk > 0}) + Hn({vk = 0} ∩ Z0(σkg))

≤ 2τk

1 − τk
Hn(Z0(σkg) ∩ {vk > 0}) + Hn(Z0(σkg)),

which implies

Cσ2
kρ

n ≤ 2τk

1 − τk
Hn(Z0(σkg) ∩ {vk > 0})

≤ 2τk

1 − τk

∫

B′
ρ(y0)

√

1 + σ2
k|∇g|2.
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For τk < 1
2

and σk < 1, this yields Cσ2
k ≤ C ′τk, which contradicts the fact that

τkσ
−2
k → 0 as k → ∞. This contradiction tells us f must be subharmonic in B′.

Proof of Claim 1: Since hk > 1 − τk we see that

Hn(Z+(σkg) ∩ ∂{vk > 0}) =

∫

Z+(σkg)∩∂{vk>0}

dHn

≤ 1

1 − τk

∫

Z+(σkg)∩∂{vk>0}

hk dHn.

For φ ∈ C∞
c (Rn+1) and k large enough we have

−
∫

{vk>0}∩∂Z+(σkg)

∇vk · ν =

∫

∂{vk>0}∩Z+(σkg)

φhk dHn.

Letting φ → χZ+(σkg), this yields

−
∫

{vk>0}∩∂Z+(σkg)

∇vk · ν =

∫

∂{vk>0}∩Z+(σkg)

hk dHn,

where ν denotes the outward pointing unit normal vector. Therefore

Hn(Z+(σkg) ∩ ∂{vk > 0}) ≤ 1

1 − τk

∫

{vk>0}∩∂Z+(σkg)

|∇vk|

≤ 1 + τk

1 − τk

Hn({vk > 0} ∩ Z0(σkg)).

Proof of Claim 2: This follows immediately from the finite additivity of

Hn.

Proof of Claim 3: Recall that f is continuous, f < g on ∂B′
ρ(y0) and f(y0) >

g(y0). For δ ∈ (0, δ0), where δ0 = 1
2
(f(y0) − g(y0)) > 0 there exists κ0 ∈ (0, δ

2
) so

that for κ ∈ (0, κ0)

f |B′
2κ(y0) > g|B′

2κ(y0) + δ.

For κ as above let ζk ∈ C∞
c (Rn) satisfying 0 ≤ ζk ≤ 1, ζk = 1 on B′

κ(y0), ζk = 0

outside B′
2κ(y0) and |∇ζk| ≤ Cn

κ
for l ≥ 1. Using standard elliptic PDE estimates

one can show that there exists κ1 ∈ (0, κ0) so that if η satisfies






∆η = −ζk in B′
ρ(y0)

η = g on ∂B′
ρ(y0)
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for κ ∈ (0, κ1) then

η < f on B′
2κ(y0).

Moreover note that since η is superharmonic and g is harmonic on B′
ρ(y0) then

g ≤ η on B′
ρ(y0).

A similar argument to the one presented above guarantees that we can choose

κ ∈ (0, κ1) so that

Hn(Z0(σkη) ∩ ∂∗Ek) = 0.

We estimate

Hn(Z+(σkη) ∩ ∂∗Ek) =

∫

Z+(σkη)∩∂∗Ek

dHn

≥
∫

Z+(σkη)∩∂∗Ek

νk · νEk
dHn

=

∫

Ek∩Z+(σkη)

divνk −
∫

∂Z+(σkη)∩Ek

νk · (−νk),

where νk(x, xn+1) = 1√
1+σ2

k|∇η(x)|2
(−σk∇η(x), 1) is a smooth function on Z. Note

that on Z0(σkη), νk is the unit normal pointing into Z+(σkη). Note that

divRn+1νk = −σkdivRn

∇η
√

1 + σ2
k|∇η|2

= −σk
∆η

√

1 + σ2
k|∇η|2

+ σ3
k

n
∑

i=1

∇iη∇iη∇i∇iη

(1 + σ2
k|∇η|2) 3

2

,

since ∆η ≤ 0 and ∇2η is bounded, we get

divRn+1νk ≥ −cσ3
k.

Hence

Hn(Z+(σkη) ∩ ∂∗Ek) ≥ Hn(Z0(σkη) ∩ Ek) − Cσ3
kHn+1(Ek ∩ Z+(σkη))

since g ≤ η then Z+(σkη) ⊂ Z+(σkg) and

Ek ∩ Z+(σkη) = {vk > 0} ∩ Z+(σkη).
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Since vk ∈ F (σk, σk, τk) in B1(0) in the direction ~en+1 and g is bounded, we get

that

Ek ∩ Z+(σkη) = {vk > 0} ∩ Z+(σkη)

⊂ B′
ρ(y0) × (−∞, σk] ∩ Z+(σkg)

⊂ B′
ρ(y0) × [−Cσk, σk].

Therefore

Hn(Z+(σkη) ∩ ∂∗Ek) ≥ Hn(Z0(σkη) − Cσ4
kρ

n.

A similar argument proves that

Hn(Z−(σkη) ∩ ∂∗Ek) ≥ Hn(Z0(σkη) \ Ek) − Cσ3
kHn+1(Z−(σkη) \ Ek).

Note that

Z−(σkη) \ Ek = Z−(σkη) ∩ {vk = 0} ∩ Z+(σkg),

since Hn+1(Z−(σkη) ∩ {vk = 0} ∩ Z(σkη)) = 0, we only need to look at the term

Z−(σkη)∩{vk = 0}∩Z+(σkg). Using again the fact that vk ∈ F (σk; σk; τk) in B1(0),

we have that

(

Z−(σkη) ∩ {vk = 0} ∩ Z+(σkg)
)

⊂
(

Z−(σkη) ∩ Z+(σkg) ∩ B′
ρ(y0) × [−σk, +∞)

)

.

Recall that on B2κ(y0), η ≤ f ≤ 1, therefore

Z−(σkη) ∩ B′
2κ(y0) × [−σk, +∞) ⊂ B′

2κ(y0) × [−σk, σk].

On B′
ρ(y0) \ B′

2κ(y0), ∆η = 0, η = g on ∂B′
ρ(y0) and η ≤ f on ∂B′

2κ(y0) thus η is

bounded on B′
ρ(y0) \ B′

2κ(y0) which guarantees that

(

Z−(σkη) ∩ (B′
ρ(y0) \ B′

2κ(y0)) × [−σk,∞)
)

⊂ (B′
2κ(y0) × [−σk, σk]) .

Hence

Hn(Z−(σkη) ∩ ∂∗Ek) ≥ Hn(Z−(σkη) \ Ek) − Cσ4
kρ

n.
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We deduce that

Hn(Z ∩ ∂∗Ek) ≥ Hn(Z0(σkη)) − Cσ4
kρ

n.

We estimate

Hn(Z0(σkη)) −Hn(Z0(σkg)) =

∫

B′
ρ(y0)

√

1 + σ2
k|∇η|2 −

√

1 + σ2
k|∇g|2

=

∫

B′
ρ(y0)

√

1 + σ2
k|∇g|2 + σ2

k|∇η −∇g|2 + 2σ2
k〈∇η −∇g,∇g〉

−
√

1 + σ2
k|∇g|2.

Using Taylor’s expansion, the fact that g is harmonic in B′
ρ(y0), g = η on ∂B′

ρ(y0)

and Poincare’s inequality we get that for k large enough

Hn(Z0(σkη)) −Hn(Z0(σkg)) ≥ σ2
k

∫

B′
ρ(y0)

|∇η −∇g|2 + 2σ2
k

∫

B′
ρ(y0)

〈∇(η − g),∇g〉 − Cσ4
kρ

n

≥ σ2
k

∫

B′
ρ(y0)

|∇η −∇g|2 − Cσ4
kρ

n

≥ σ2
kρ

−2

∫

B′
ρ(y0)

|η − g|2 − Cσ4
kρ

n

≥ Cσ2
kρ

n.

Lemma 9. There is a constant C = C(n) > 0 such that, for y ∈ B′
1
2

, the function

f from Lemma 8 satisfies

0 ≤
∫ 1

4

0

1

r2
(fy,r − f(y))dr ≤ C,

where

fy,r =

∫

−
∂B′

r(y)

f dHn−1.

Proof: Without loss of generality, we may assume y = 0. Since f(0) = 0 it is

enough to show that

0 ≤
∫ 1

4

0

1

r2

∫

−
∂B′

r

f dHn−1 ≤ C,
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where C depends only on n. Because f is subharmonic,

0 = f(0) ≤
∫

−
∂B′

r

f dHn−1,

which proves the first inequality.

Let p > 2σj be small and let Gp denote the Green’s function of B 1
2
(0)∩{xn+1 <

0} with pole −pen+1. By reflection Gp can be extended to a smooth function on

B 1
2
(0) \ {±pen+1} with Gp(x, xn+1) = −G(x,−xn+1) for xn+1 > 0. For j large let

Gj
p(X) = Gp(X +σjen+1) be defined on B 1

2
(−σjen+1)\{(σj ±p)en+1}. We denote by

B 1
2

= B 1
2
(0) and by Bj

1
2

= B 1
2
(−σjen+1). We may assume that Hn(∂Bj

1
2

∩∂{vj}) = 0.

Green’s formula ensures that

−
∫

Bj
1
2

〈vj,∇Gj
p〉 =

∫

∂Bj
1
2

vj∂νG
j
p − vj(−(p + σj)en+1),

where ∂νG
j
p = 〈∇Gj

p, ν〉, and ν denotes the inward pointing unit normal to ∂B′
1
2

.

On the other hand

−
∫

∂Bj
1
2

〈∇vj,∇Gj
p〉 =

∫

∂{vj>0}∩Bj
1
2

hjG
j
p dHn.

Let νj denote the inward pointing unit normal vector to ∂Ωj = ∂{vj > 0} then

by Green’s formula we have

∫

B′
1
2

∩∂{vj>0}

〈Gj
pen+1 − xn+1∇Gj

p, νj〉 dHn = (σj + p) +

∫

B′
1
2

∩{vj>0}

xn+1∂νG
j
p.
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Thus we obtain

∫

Bj
1
2

∩∂{vj>0}

xn+1∂νj
Gj

p dHn

=

∫

B 1
2
∩∂{vj>0}

(pj + 〈en+1, νj〉)Gj
p dHn

−
∫

∂Bj
1
2

∩{vj>0}

(xn+1 + vj)∂Gj
p dHn + Gj(−(p + σj)en+1) − (σj + p)

=

∫

B 1
2
∩∂{vj>0}

(

hj

1 − τj
+ 〈en+1, νj〉

)

Gj
p dHn

− τj

∫

B 1
2
∩∂{vj}

hjG
j
p dHn + vj(−(p + σj)en+1) − (σj + p)

−
∫

∂Bj
1
2

∩{vj>0}

(xn+1 + vj)∂νG
j
p dHn

=

∫

B 1
2
∩∂{vj>0}

(

hj

1 − τj
+ 〈en+1, νj〉

)

Gj
p dHn + (1 + τj)Gj(−(p + σj)en+1) − (σj + p)

−
∫

∂Bj
1
2

∩{vj>0}

(xn+1 + Gj(1 + τj))∂νj
Gj

p dHn.

Since σj − p < −σj and Gj ∈ F (σj ; σj ; τj) in B1(0) in the direction en+1, then

Gj
p ≤ 0 on ∂{vj > 0} ∩ Bj

1
2

. Furthermore, since hj ≥ 1 − τj on Bj
1
2

∩ ∂{vj > 0}, we

have
∫

B 1
2
∩∂{vj>0}

(

hj

1 − τj
+ 〈en+1, νj〉

)

Gj
p ≤ 0.

Since Gj(0) = 0, we get

|Gj(−(p + σj)en+1)| ≤ sup
B1(0)

|∇vj |(p + σj) ≤ (1 + τj)(p + σj).

Hence

(1 + τj)vj(−(p + σj)en+1) − (σj + p) ≤ 3τj(p + σj).

Since {vj > 0} ⊂ {xn+1 < σj}, for xn+1 ≤ σj we have in B1(0)

vj(x, xn+1) = |vj(x, xn+1 − vj(x, σj)| ≤ (1 + τj)(σj − xn+1)
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which yields

xn+1 ≤ xn+1 + vj(1 + τj) ≤ (1 − (1 + τj)
2)xn+1 + (1 − τj)

2σj .

Thus

0 ≤ xn+1 + (1 + τj)vj ≤ (1 + τj)
2σj for xn+1 ∈ [0, σj],

and

−σj ≤ xn+1 + (1 + τj)vj ≤ (1 + τj)σj for xn+1 ∈ [−σj , 0].

Since vj ∈ F (σj; σj ; τj) in B1(0) in the direction en+1 with hj(0) = 1 then

xn+1 + Gj(1 + τj) ≥ xn+1 + (1 + τj)(−xn+1 − σj)

≥ −τjxn+1 − σj(1 + τj)

≥ −σj(1 + τj) for xn+1 ≤ −σj .

We combine the fact that ∂νG
j
p ≥ 0 with the last results to obtain

−
∫

∂Bj
1
2

∩{vj>0}

(xn+1 + (1 + τj)vj)∂νG
j
p ≤ σ(1 + τj)

∫

∂Bj
1
2

∩{vj>0}∩{xn+1<0}

∂νG
j
p.

Using the fact that σ−2
j τj ≤ 1 for j large enough, and that 1 ≥ p ≥ 2σj we

conclude that

1

σj

∫

Bj
1
2

∩∂{vj>0}

xn+1∂νj
Gj

p ≤ 9σj + 2

∫

∂Bj
1
2

∩{vj>0}∩{xn+1<0}

∂νG
j
p.

Thus

lim sup
j→∞

1

σj

∫

Bj
1
2

∩∂{vj>0}

xn+1∂νj
Gj

p ≤ 2

∫

∂B 1
2
∩{xn+1≤0}

∂νGp ≤ Cp.

Since vj ∈ F (σj, σj ; τj), we have that χ{vj>0} → χ{xn+1≤0} as j → ∞ in L1
loc(B1(0))

and ∂{vj > 0} = ∂Ωj → {xn+1 = 0} in the Hausdorff distance sense uniformly

on compact sets. Moreover, since f+
j and f−

j converge uniformly to f on compact

sets and ∇Gj
p converges to Gp smoothly away from ±pen+1, we have that

sup
(x,xn+1)∈∂{vj>0}∩Bj

1
2

∣

∣

∣

∣

xn+1

σj
∇Gj

p(x, xn+1) − f(x)∇Gp(x, 0)

∣

∣

∣

∣

→ 0 as j → ∞.
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Therefore
1

p

∫

B′
1
2

f(x)∇−en+1Gp(x, 0) dx ≤ C.

Note that ∇−en+1Gp

∣

∣

xn+1=0
= − ∂Gp

∂xn+1

∣

∣

∣

xn+1=0
is radially symmetric on B′

1
2

. In

fact, by definition Gp(x, xn+1) = F (x, xn+1 + p) − up(x, xn+1) where F denotes

the fundamental solution of the Laplacian in Rn+1 and up is the unique har-

monic function satisfying ∆up = 0 in B 1
2
∩ {xn+1 < 0} = B−

1
2

and vp(x, xn+1) =

F (x, xn+1 + p) for (x, xn+1) ∈ ∂B−
1
2

. Since F (x, xn+1 + p) = F̃ (|x|, |xn+1 + p|), then

up(x, xn+1) = ũp(|x|, xn+1) and Gp(x, xn+1 + p) = G̃p(|x|, xn+1), which justifies the

fact that − ∂Gp

∂xn+1

∣

∣

∣

xn+1=0
is radially symmetric on B′

1
2

.

Let gp(r) = gp(|x|) = − ∂Gp

∂xn+1
(x, 0) for x = rθ and θ ∈ S

n−1. With this notation,

1

p

∫

B′
1
2

f(x)gp(|x|) dx =
1

p

∫ 1
2

0

rn−1gp(r)

∫

Sn−1

f(rθ) dθ dr

=
σn−1

p

∫ 1
2

0

rn−1gp(r)

∫

−
∂B′

r

f dHn−1 dr

≤ C.

Comparing gp(r) with the Poisson kernel of Rn+1 with pole at −pen+1, Pp(r),

and using the comparison principle for nonnegative harmonic functions on B−
1
2

we obtain
gp(r)

Pp(r)
= lim

x→(rθ,0)

Gp(X)

G∞
p (X)

≥ Cn
Gp(Ap)

G∞
p (Ap)

,

where G∞
p denotes the Green’s function of Rn+1 with pole at −pen+1; and Ap =

− p
64

en+1. Since G∞
p (Ap) ≤ Cn

pn−1 and Gp(Ap) ≥ Cn

pn−1 , this means

gp(r) ≥ Cn
p

(r2 + p2)(n+1)/2
.

Therefore
∫ 1

2

0

rn−1

(r2 + p2)(n+1)/2

(∫

−
∂B′

r

f(x) dx

)

dr ≤ C,

and C only depends on n. Letting p tend to 0, we are done.
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Lemma 10. The function f in Lemma 8 is Lipschitz with a constant that only

depends on n. Furthermore, there exists a large constant C = C(n) > 0 such that

for any given θ ∈ (0, 1) there exists η = η(θ) > 0 and l ∈ Rn × {0}, with |l| ≤ C so

that

f(y) ≤ 〈l, y〉 +
θ

2
η for y ∈ B′

η.

Proof: For y ∈ B′
1
16

, let Gy denote the Green’s Function of B′
1
8

with pole at y.

Since f is subharmonic in B′
1
2

, Green’s formula ensures that

f(y) =

∫

∂B′
1
8

f(q)
∂Gy(q)

∂ν
dHn−1(q) −

∫

B′
1
8

Gy dλ,

where λ = ∆f is a nonnegative Radon measure and ν denotes the inward-

pointing unit normal to ∂B′
1
8

. Recall that for q ∈ ∂B′
1
8

,

∂Gy

∂ν
(q) = 8

(

1
8

)2 − |y|2
nωn

· 1

|y − q|n .

Note that for q ∈ ∂B′
1
8

,
∂Gy

∂ν
(q) is a smooth function of y in B

′
1
16

. Since |f | ≤ 1 for

x, y ∈ B
′
1
16

we get that

|f(x) − f(y)| =

∣

∣

∣

∣

∣

∣

∫

∂B′
1
8

f(q)

{

∂Gy

∂ν
(q) − ∂Gx

∂ν
(q)

}

dHn−1(q)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫

B′
1
8

|Gy − Gx| dλ

∣

∣

∣

∣

∣

∣

≤ C|x − y|+
∫

B′
1
8

|Gy − Gx| dλ,

where C > 0 is a constant that only depends on n. In order to estimate the
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second term in the right hand side, note that

∫

B′
1
8

|Gy − Gx| dλ ≤





∫

B′
1
8

∫ 1

0

|∇ξtGξt(z)| dt dλ(z)



 |x − y|

≤ C|x − y|
∫ 1

0

∫

B′
1
8

dλ(z)

|ξt − z|n−1
dt

where ξt = tx + (1 − t)y for [0, 1].

Therefore in order to prove that f is Lipschitz on B
′
1
16

, we need to show that

there is a constant C only depending on n such that for ξ ∈ B
′
1
16

,

∫

B′
1
8

dλ(z)

|ξ − z|n−1
≤ C.

Let ξ ∈ B
′
1
16

, and let Gr denote the Green’s function of B′
r(ξ) with pole ξ. By

Green’s formula we have that if fξ,r =
∫

−
B′

r(ξ)
f dHn−1 then

fξ,r − f(ξ) =

∫

−
∂B′

r(ξ)

(f − f(ξ)) dHn−1 =

∫

B′
r(ξ)

Gr(z) dλ(z),

because − ∂Gr(x)
∂ν

∣

∣

∣

x∈∂B′
r(ξ)

= 1
σn−1rn−1 . Recalling that Gr(z) = Cn

1
|z−ξ|n−2 − Cn

rn−2 we

obtain for n ≥ 3

C ≥
∫ 1

4

0

1

r2
(fξ,r − f) dr

=

∫ 1
4

0

1

r2

∫

B′
r(ξ)

Gr(z) dλ(z)

≥
∫

B′
1
4

(ξ)

(

∫ 1
4

|ξ−z|

1

r2
Gr(z) dr

)

dλ(z)

≥
∫

B′
3
16

(ξ)

(

∫ 1
4

|ξ−z|

1

r2
Gr(z) dr

)

dλ(z)

≥ C−1

∫

B′
3
16

(ξ)

dλ(z)

|z − ξ|n−1
.
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For ξ ∈ B
′
1
16

, this yields

∫

B′
1
8

dλ(z)

|z − ξ|n−1
≤
∫

B′
3
16

(ξ)

dλ(z)

|z − ξ|n−1
≤ C.

We conclude that f is Lipschitz on B
′
1
16

.

Because f is subharmonic, for r ∈ (0, 1
4
)

inf
r≤s≤ 1

4

1

s

∫

−
∂B′

s

f

∫ 1
4

r

ds

s
≤
∫ 1

4

0

1

r2

∫

−
∂B′

r

f

and
(

log
1

4r

)

inf
r≤s≤ 1

4

1

s

∫

−
∂B′

s

f ≤ C.

Let θ′ > 0 depend on θ to be chosen later. Let r > 0 be small enough so that

C(log 1
4r

)−1 ≤ θ′

2
. There exists s ∈ [r, 1

4
] so that 1

s

∫

−
∂B′

s
f ≤ θ′. Let g satisfy ∆g = 0

in B′
s and g = f on ∂B′

s, since f is Lipschitz in B
′
1
16

and f(0) = 0, |f(x)| ≤ C|x|
for x ∈ B

′
1
16

. Thus

g(0) =

∫

−
∂B′

s

|g| ≤ Cθ′s,

and by the maximum principle

sup
B′

s

|g| ≤ sup
∂B′

s

|f | ≤ Cs,

which implies

sup
B′

s
2

|∇g| ≤ C and sup
B′

s
2

|∇2g| ≤ C

s
.

Since f is subharmonic on B′, this tells us that for y ∈ B′
s
2

f(y) ≤ g(y) ≤ Cθ′s + 〈∇g(0), y〉+
C

s
|y|2.

That gives us

f(y) ≤ 〈l, y〉 +
θ

2
η for y ∈ B′

η,

where l = ∇g(0), Q = 2C
√

θ′ and η =
√

θ′s.
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Lemma 11. Let Ω ⊂ Rn+1 be an unbounded domain and a set of locally finite

perimeter such that 0 ∈ ∂Ω. Let v be a Green’s function with pole at ∞ for Ω,

let h be the associated Poisson kernel. Given θ ∈ (0, 1) there exists σθ > 0 and

ηθ ∈ (0, 1) so that if σ ∈ (0, σθ) and τ ∈ (0, σθσ
2) then for Q0 ∈ ∂Ω, ρ > 0 if

v ∈ F (σ; σ; τ) in Bρ(Q0) in the direction ν then v ∈ F (θσ; 1; τ) in the direction

Bηρ(Q0) in the direction ν and |ν − ν| ≤ Cσ.

Proof: Assume that the lemma is false. Then there exists θ0 ∈ (0, 1) such

that for every η > 0 (later we specify one) and every nonnegative decreasing

sequence {σj} there is a sequence {τj} with τjσ
−2
j → 0 so that

v ∈ F (σj; σj ; τj) in Bρj
(Qj) in the direction νj

but

v /∈ F (θ0σj ; 1; τj) in Bηρj
(Qj).

By Lemmas 8 and 10 we get a function f on B′
1
16

satisfying

f(y) ≤ 〈l, y〉 +
θ

2
η for y ∈ B′

η.

By Lemma 7, f is a uniform limit of the functions f+
j . Therefore Lemma 10

yields that, for θ ∈ (0, 1) there exists η > 0 so that for j large enough

f+
j (y) ≤ 〈l, y〉 + θη for y ∈ B′

η,

which by definition means that

vj(X) = 0 for X = (x, xn+1) ∈ Bη(0) with xn+1 > σj〈l, x〉 + θησj .

Let ν = (1 + σ2
j |l|2)−

1
2 (−σjl, 1) so the that previous line implies

vj(X) = 0 for X ∈ Bη(0) with 〈X, ν〉 ≥ θησj

(1 + σ2
j |l|2)

1
2

≥ 2θησj

for j large enough. Therefore v ∈ F (2θηj; 1; τj) in Bη(Q0) in the direction ν. This

contradicts the statement v /∈ F (θ0σj ; 1; τj) in Bη(Q0) in the case θ = θ0

2
.
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2.3 Main Theorem

Theorem 1. Assume that Ω ⊂ R
n+1 is an unbounded NTA domain with locally

finite perimeter satisfying the exterior separation property at large scales. Let v

be a Green’s function with pole at ∞, and let h be the associated Poisson kernel.

Given δ > 0 small enough (depending only on n) there exists ǫ = ǫ(δ) > 0 such

that if τ < ǫ and

h ≥ 1 − τ,

lim sup
X→Q∈∂Ω, X∈Ω

|∇v(X)| ≤ 1 + τ

and

lim inf
r→∞

Θ(0, r) < δ, (2.19)

then

Θ(Q, r) < 32δ for all Q ∈ ∂Ω and for all r > 0.

Proof: Fix r > 0. By Lemma 4, (2.19) implies that for Q ∈ ∂Ω

lim inf
r→∞

Θ(Q, r) < 16δ.

Let θ ∈ (0, 1
2
) be such that

Cθ + 2θ < 1, (2.20)

where C is as in Proposition 6. Let r > 0 be given. Let σθ be as in Lemma

(6), and set ǫ = σθ. Write σ = 16δ, and assume that σ < σθσ
2 and τ < ǫ. By

Proposition 1, v ∈ F (σ; 1; τ) in Bρ(Q) in the direction ν0 = ν0(Q), for Q ∈ ∂Ω with

ρ ≥ r sufficiently large. Next, Lemma 11 ensures that

v ∈ F (θσ; 1; τ) in Bηρ(Q) in the direction ν0.

Lemma 6 then guarantees that

v ∈ F (2θσ; Cθσ, τ) in B ηρ
2
(Q) in the direction ν1.
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From this and the inequality (2.20) we conclude that

v ∈ F (σ; σ; τ) in B ηρ
2
(Q) in the direction ν1.

Iterating the previous argument shows that, for all k ∈ N and for all Q ∈ ∂Ω,

v ∈ F (σ; σ; τ) in B
( η

2 )
k
ρ
(Q) in the direction νk,

for some νk ∈ Sn. Thus for X ∈ B
( η

2 )
k
ρ
(Q)

v(X) = 0 for 〈X − Q, νk〉 ≥ σ
(η

2

)k

ρ (2.21)

and

v(X) ≥ −h(Q)

[

〈X − Q, νk〉 + σ
(η

2

)k

ρ

]

≥ 0 for 〈X − Q, νk〉 ≤ −σ
(η

2

)k

ρ. (2.22)

In particular if Lk(Q) denotes the n-plane through Q orthogonal to νk, equations

(2.21) and (2.22) imply

D

[

∂Ω ∩ B
( η

2 )
k
ρ
(Q); Lk(Q) ∩ B

( η
2 )

k
ρ
(Q)

]

≤ σ
(η

2

)k

ρ.

There is k ≥ 0 so that
(

η
2

)k+1
ρ ≤ r ≤

(

η
2

)k
ρ; define rk =

(

η
2

)k
ρ. For P ∈

∂Ω ∩ Br(Q), there exists Z ∈ Lk(Q) ∩ Brk
(Q) so that |Z − P | < σrk. Note that

|Z − Q| ≤ |Z − P | + |P − Q| < σrk + r.

Hence there exists Z ′ on the line segment from Q to Z such that |Z ′ − Q| < r

and |Z ′ − Z| < σrk; moreover, we see that

|Z ′ − P | ≤ |Z − Z ′| + |Z − P | < 2σrk.

Because Z and Q are both in the plane Lk(Q) and the ball Br(Q), so is the point

Z ′. This proves

dist(P, Lk(Q) ∩ Br(Q)) < 2σrk for every P ∈ ∂Ω ∩ Br(Q). (2.23)



61

Next, for Z ∈ Lk(Q) ∩ Brk
(Q) there exists Z ′ ∈ Lk(Q) ∩ Br−σrk

(Q) so that |Z −
Z ′| < σrk. There exists P ∈ ∂Ω ∩ Brk

(Q) so that |Z ′ − P | < σrk. This give us

|Z − P | ≤ |Z − Z ′| + |Z ′ − P | < 2σrk. Moreover,

|P − Q| ≤ |P − Z ′| + |Z ′ − Q| < σrk + (r − σrk) = r

Thus P ∈ ∂Ω ∩ Br(Q). Now we have proved

dist(Z, ∂Ω ∩ Br(Q)) < 2σrk for every Z ∈ Lk(Q) ∩ Br(Q). (2.24)

Putting together inequalities (2.23) and (2.24) yields

1

r
D [∂Ω ∩ Br(Q); Lrk

(Q) ∩ Br(Q)] ≤ 2σ.

That is to say,

Θ(Q, r) ≤ 2σ for all r > 0.
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Chapter 3

A BOUNDED SETTING WITH A BMO CONDITION

In this chapter we prove estimates on the gradient of a Green’s function

that will allow us to show that a domain is “close to being a ball” in a geometric

sense. We will make use of the following notation for X ∈ Ω ⊂ Rn+1:

δ(X) = dist(X, ∂Ω).

3.1 Crude Estimates

Lemma 12. Let G0(X) be the Green’s function for an NTA domain Ω ⊂ R
n+1

with pole at 0 ∈ Ω. Let ω0 be the harmonic measure for Ω with pole at 0, and

suppose it satisfies

ω0(Br(Q)) ≤ Lrn for all r > 0 and Q ∈ ∂Ω.

Then for some N = N(L) < ∞ we have

|∇G0| ≤ N for X ∈ Ω with δ(X) ≤ δ(0)

8
.

Proof: Let R = δ(0), so that BR(0) ⊂ Ω and ∂BR(0) ∩ ∂Ω 6= ∅. Let r > 0 and

Q ∈ ∂Ω be such that 0 /∈ Br(Q), so that the Riesz decomposition theorem for

subharmonic functions (see Theorem 6.18 in [7]) applied to G gives us

∫

−
∂Br(Q)

G(Z) dHn(Z) =
1

(n + 1)σn

∫ r

0

ω0(Bt(Q))

tn
dt.
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Then because ω0(Bt(Q)) ≤ Ltn, we have

∫

−
∂Br(Q)

G(Z) dHn(Z) =
Lr

(n + 1)σn

.

Let X ∈ Ω with r = δ(X) < R
4
. Select Q ∈ ∂Ω such that |X −Q| = r. Since r < R

4
,

we see that 0 /∈ B4r(Q), and the Riesz representation theorem for subharmonic

functions implies

G(X) ≤ (2r)2 − |X − Q|2
2r(n + 1)ωn

∫

∂B2r(Q)

G(Z)

|Z − X|n+1
dHn(Z).

Since |Z − X| ≥ r for X ∈ ∂Br(Q), we now have

G(X) ≤ 3

2

∫

−
∂B2r(Q)

G(Z) dHn(Z) ≤ 3Lδ(X)

(n + 1)σn
.

Thus, for N = 3L
(n+1)σn

, we have shown

G(X) ≤ Nδ(X) for X ∈ Ω with δ(X) <
R

4
.

Standard estimates for harmonic functions on {Y ∈ Ω; δ(Y ) < R
8
} now give

|∇G(X)| ≤ N for X ∈ Ω with δ(X) <
R

8
.

Lemma 13. Under the same hypothesis as Lemma 12, we see that

δ(0) ≥ B = B(L).

Proof: Let R = δ(0). Let G̃ denote the Green’s function for BR(0) ⊂ Ω ⊂ R
n+1

with pole at 0. Let F (X) denote the fundamental solution of the Laplacian:

Φ(X) =
C

|X|n−1
.



64

Here, C = 1
(n−1)σn

is chosen so that ∆Φ = −δ0, the negative point mass at the

origin, in the sense of distributions. Then let u denote the solution of






∆u = 0 in Ω

u = Φ on ∂Ω
,

and let ũ be the solution of






∆ũ = 0 in BR(0)

ũ = Φ on ∂BR(0)
.

Then G0 = Φ − u on Ω and G̃ = Φ − ũ on BR(0). Therefore

G − G̃ = (Φ − u) − (Φ − ũ) = ũ − u on BR(0). (3.1)

Because BR(0) ⊂ Ω and Φ is radially decreasing, we see that

max
∂Ω

Φ ≤ C

Rn−1

because Φ(Q) ≤ C
Rn−1 for Q ∈ ∂Ω. Therefore, by the maximum principle, we get

u ≤ C

Rn−1
,

where the right side is the (constant) value of ũ on ∂BR(0). Therefore u ≤ ũ on

∂BR(0). Inserting this into (3.1) yields

G ≥ G̃ on BR(0).

Therefore, for any Q ∈ ∂Ω ∩ ∂BR(0) (which is nonempty), we get

|∇G̃(Q)| = lim
h→0

G̃(R−h
R

Q) − G̃(Q)

h

= lim
h→0

G̃(R−h
R

Q) − G(Q)

h

≤ lim sup
h→0

G(R−h
R

Q) − G(Q)

h

≤ lim sup
h→0

1

h

∫ R

R−h

∣

∣

∣

∣

∇G

(

R − t

R
Q

)∣

∣

∣

∣

dt

≤ N,
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with N as in Lemma 12. But we know from direct calculation that

|∇G̃(X)| =
1

σn|X|n .

Consequently,

|∇G̃(Q)| =
1

σnRn
.

This gives us
1

σnRn
≤ N,

and therefore

R ≥ (σnN)−
1
n .

The point of this argument was that Ω contains a ball, centered at the origin,

with a radius bounded below in terms of the data L and the dimension of the

space. Later in this chapter, we will improve this estimate by showing that Ω

contains a ball whose radius is in fact much larger: close the radius of a ball

with the same surface measure as ∂Ω. However, these estimates will only work

out if we add the following hypotheses regarding the domain: we will assume

that Ω is non-tangentially accessible and Ahlfors regular.

3.2 A Finer Estimate on the Gradient of the Green’s Function

The next technical lemma is an ingredient for the proof of Theorem 2.

Lemma 14. Suppose that G0 is a Green’s function for a bounded domain Ω ⊂
Rn+1 that is NTA and Ahlfors regular, and k0 is the corresponding Poisson kernel

satisfying k0 ≤ C < ∞. Let ~F (Q) be the nontangential limit function of ∇G0 on

∂Ω. Then since k0 ∈ L2
loc(dHn), for Hn a.e. Q ∈ ∂Ω we have

~F (Q) = k0(Q)~n(Q)

where ~n is the inward-unit normal vector to ∂Ω.
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The proof of this lemma is contained in [14]. It is Lemma 3.2 in that article.

Theorem 2. Let Ω ⊂ Rn+1 be an Ahlfors regular, non-tangentially accessible

domain with NTA constant M , and assume 0 ∈ Ω. Let G0(X) denote the Green’s

function for Ω with pole at 0, let ω0 denote the harmonic measure for Ω with pole

at the origin, and let k0 denote the associated Poisson kernel. Suppose that

ω0(Br(Q)) ≤ Lrn for all r > 0 and Q ∈ ∂Ω.

Then there exists a constant α > 0 depending only on M such that for X ∈ Ω

with δ(X) < δ(0)
16

we have

|∇G0(X)| ≤
∫

∂Ω

k0(Q)dωX + Cδ(X)α. (3.2)

The constant C depends only on n, M and L.

Proof: Fix X ∈ Ω with δ(X) < δ(0)
16

, and select Q0 ∈ ∂Ω with |Q0 −X| = δ(X).

Let φ ∈ C∞
c

(

B δ(0)
4

(Q0)
)

, with

φ(Z) = 1 for |Z − Q0| <
δ(0)

8
, (3.3)

0 ≤ φ ≤ 1, (3.4)

and

|∇φ| ≤ C

δ(0)
and |∆φ| ≤ C

δ(0)2
. (3.5)

In particular, φ = 0 in Bδ(0)/4(0).

Let GZ denote the Green’s function for Ω with pole at Z. For Z ∈ Ω define

ω0 : Ω → Rn+1 by

ω0(Z) =

∫

Ω

GZ(Y )∆[φ(Y )∇G0(Y )] dY.
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Here, ∆[φ(Y )∇G0(Y )] denotes the vector whose ith entry is ∆[φ(Y )∂G0

∂Yi
(Y )].

Hence for Y 6= 0 we have

(∆[φ(Y )∇G0(Y )])i = ∆[φ(Y )
∂G0

∂Yi
(Y )]

= (∆φ(Y ))
∂G0

∂Yi
(Y ) + 2∇φ(Y ) · ∇∂G0

∂Yi
(Y ) + φ(Y )∆

∂G0

∂Yi
(Y )

= (∆φ(Y ))
∂G0

∂Yi

(Y ) + 2∇φ(Y ) · ∇∂G0

∂Yi

(Y ).

In the last line we used the observation that ∂G0

∂Yi
(Y ) is harmonic away from

the origin. For the sake of convenience, we will use the following notation: Let

∇φ(Y ) · ∇(∇G0(Y )) denote the vector whose ith entry is ∇φ(Y ) · ∇∂G0

∂Yi
(Y ). Then

we have

∆[φ(Y )∇G0(Y )] = (∆φ(Y ))∇G0 + 2∇φ(Y ) · ∇[∇G0(Y )].

Now we define

ω1
0(Z) =

∫

Ω

GZ(Y )∆φ(Y )∇G0(Y ) dY

and

ω2
0(Z) = 2

∫

Ω

GZ(Y )∇φ(Y ) · ∇(∇G0(Y )) dY.

Thus we obtain ω0 = ω1
0 + ω2

0. These vector-valued integrals converge for all

Z ∈ Ω because φ is supported away from the singularity of G0 at the origin, so

each integrand is a Green’s function GZ(Y ) multiplied by a smooth, compactly

supported function. We will be able to analyze each of the terms ω1
0 and ω2

0

separately. We will demonstrate that these terms have the kind of decay at ∂Ω

that we need in the last term in (3.2).

Standard estimates for harmonic functions give us

|∇G0(Y )| ≤ C
G0(Y )

δ(Y )
and |∇2G0(Y )| ≤ C

G0(Y )

δ(Y )2
, (3.6)
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with C = C(n). The second inequality implies in particular that

|∇(∇G0(Y ))| ≤ C
G0(Y )

δ(Y )2
.

If we let R = δ(0)
8

, we have spt∇φ, spt∆φ ⊂ B2R(Q0) \ BR(Q0), because φ

is constant outside B2R(Q0) and inside BR(Q0). Consequently, and because of

(3.5),

|ω2
0(X)| ≤ 2

∫

Ω

|GX(Y )||∇φ(Y )||∇(∇G0(Y )| dY

≤ C

δ(0)

∫

R≤|Y −Q0|≤2R

GX(Y )
G0(Y )

δ2(Y )
dY, (3.7)

with C = C(n). Next, let As = A(Q0,
s
2
) be an interior NTA point for Q0, so that

s

M
≤ |As − Q0| ≤ s

and

δ(As) ≥
s

M
.

Then for Y ∈ Ω ∩ B(Q0, 2R) \ B(Q0, R), we have

GX(Y ) ≤ C

[

δ(X)

δ(0)

]α

GAR
(Y ) (3.8)

with C = C(M), for some 0 < α < 1 (see Lemma 4.1 in [9]).

From the comparison principle (Lemma 4.10 in [9]), we see for the same Y

that

GAR
(Y )

GAR
(A2R)

≤ C
G0(Y )

G0(A2R)
, C = C(M).

Given this, we have

GAR
(Y ) ≤ CGAR

(A2R)
G0(Y )

G0(A2R)
≤ C

δ(0)n−1

G0(Y )

G0(A2R)
, C = C(M). (3.9)
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Consequently,

|ω2
0(X)| ≤ C

δ(0)

∫

R≤|Y −Q0|≤2R

GX(Y )
G0(Y )

δ2(Y )
dY

≤ C

δ(0)

∫

R≤|Y −Q0|≤2R

[

δ(X)

δ(0)

]α

GAR
(Y )

G0(Y )

δ2(Y )
dY

≤ C

δ(0)

[

δ(X)

δ(0)

]α ∫

R≤|Y −Q0|≤2R

C

δ(0)n−1

G0(Y )

G(A2R)

G0(Y )

δ2(Y )
dY

=
C

δ(0)n

[

δ(X)

δ(0)

]α
1

G(A2R)

∫

R≤|Y −Q0|≤2R

G2
0(Y )

δ2(Y )
dY. (3.10)

We used (3.7) to obtain the first line above, (3.8) to obtain the second line, and

(3.9) to obtain the third line.

Next, we would like to estimate
∫

R≤|Y −Q0|≤2R
G2(Y )
δ2(Y )

dY. Since Ω is NTA, there

exists C = C(M) > 1 such that

C−1 <
ω0(Bδ(Y )(Q))

δ(Y )n−1GY (0)
< C,

according to Lemma 4.8 in [9]. Thus

GY (0) < C
ω0(Bδ(Y )(Q))

δ(Y )n−1
,

hence

GY (0)

δ(Y )
≤ C

ω0(Bδ(Y )(Q))

δ(Y )n
.

Because of the symmetry of the Green’s function,

G0(Y )

δ(Y )
≤ C

ω0(Bδ(Y )(Q))

δ(Y )n
≤ CL. (3.11)

The second inequality in the last line makes use of the hypothesis that for all

r > 0 and Q ∈ ∂Ω, we have ω0(B(Q, r)). This now gives us

∫

R≤|Y −Q0|≤2R

G2
0(Y )

δ2(Y )
dY ≤ CL2δ(0)n+1 (3.12)
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(having recalled that R = δ(0)
8

), and this implies

|ω2
0(X)| ≤ C

δ(0)n

[

δ(X)

δ(0)

]α
1

G(A2R)

∫

R≤|Y −Q0|≤2R

G2
0(Y )

δ2(Y )
dY (by (3.10))

≤ CL2

δ(0)n

[

δ(X)

δ(0)

]α
1

G0(A2R)
δ(0)n+1 (by (3.12))

=
CL2δ(0)

G0(A2R)

[

δ(X)

δ(0)

]α

. (3.13)

The point is that this term will vanish like δ(X)α as δ(X) → 0.

Next we try to estimate

ω1
0(X) =

∫

Ω

GX(Y )∆φ(Y )∇G0(Y ) dY.

Using the fact that spt∆φ ⊂ {R ≤ |Y − Q0| ≤ 2R}, we get

|ω1
0(X)] =

∫

R≤|Y −Q0|≤2R

GX(Y )|∆φ(Y )||∇G0(Y )| dY

≤ C

δ(0)2

∫

R≤|Y −Q0|≤2R

GX(Y )|∇G0(Y )| dY (by (3.5))

≤ C

δ(0)2

∫

R≤|Y −Q0|≤2R

GX(Y )
G0(Y )

δ(Y )
dY (by (3.6))

≤ C

δ(0)2

[

δ(X)

δ(0)

]α ∫

R≤|Y −Q0|≤2R

GAR
(Y )

G0(Y )

δ(Y )
dY (by (3.8))

≤ C

[

δ(X)

δ(0)

]α
1

δ(0)n+1

1

G0(A2R)

∫

R≤|Y −Q0|≤2R

G0(Y )2

δ(Y )
dY (by (3.9))

≤ CL

[

δ(X)

δ(0)

]α
1

δ(0)n+1

1

G0(A2R)

∫

R≤|Y −Q0|≤2R

G0(Y ) dY (by (3.11))

≤ CL2

[

δ(X)

δ(0)

]α
1

δ(0)n+1

1

G0(A2R)

∫

R≤|Y −Q0|≤2R

δ(Y ) dY (by (3.11) again)

≤ CL2

[

δ(X)

δ(0)

]α
1

δ(0)n+1

1

G0(A2R)

∫

R≤|Y −Q0|≤2R

δ(0)

4
dY

(since δ(Y ) ≤ |Y − Q0| ≤ δ(0)
4

)

≤ CL2

[

δ(X)

δ(0)

]α
1

δ(0)n+1

1

G0(A2R)
δ(0)n+2

= CL2

[

δ(X)

δ(0)

]α
δ(0)

G0(A2R)
.
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The value of the constant C changed from line to line in this calculation, but at

each step it depended only on n and on the NTA constant M. Thus we have

|ω1
0(X)| ≤ CL2 δ(0)

G0(A2R)

[

δ(X)

δ(0)

]α

, C = C(n, M).

Combining this with (3.13) gives us

|ω0(X)| ≤ CL2 δ(0)

G0(A2R)

[

δ(X)

δ(0)

]α

, C = C(n, M).

Next, let

f(X) = φ(X)∇G0(X) + ω0(X). (3.14)

Note that f(X) is a harmonic vector-valued function in Ω since

∆f(X) = ∆(φ(X)∇G(X)) + ∆ω0(X)

= ∆(φ(X)∇G(X)) + ∆

∫

Ω

GX(Y )∆[φ(Y )∇G(Y )dY

= ∆(φ(X)∇G(X)) − ∆[φ(X)∇G(X)]

= 0.

In the third line we used the fact that ∆GX(Y ) = −δX , the point mass at X.

Observe also that

f(X) = 0 on ∂Ω \ Bδ(0)/4(Q0)

because spt φ ⊂ Bδ(0)/4(Q0) and spt ω0 ⊂ Bδ(0)/4(Q0).

According to Lemma 14, N(φ∇G0) ∈ L1(∂Ω; ωZ) for all Z ∈ Ω. (Here, N(g)

denotes the non-tangential limit function on ∂Ω arising from a function g on

Ω.) Then because ω0 is bounded, we also have N(ω0) ∈ L1(∂Ω; ωZ) for all Z ∈ Ω.

Thus N(f(X)) ∈ L1(∂Ω; ωZ) for all Z ∈ Ω. Consequently,

f(X) =

∫

∂Ω

F (Q) dωX for all X ∈ Ω,

where F (Q) is the non-tangential limit function for f(X), which again by Lemma

14 satisfies

|F (Q)| = φ(Q)k0(Q).
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So for X ∈ Bδ(0)/4(Q0), we know that φ(X) = 1, giving us

|∇G(X)| = |f(X) − ω0(X)|

≤ |f(X)| + |ω0(X)|

=

∣

∣

∣

∣

∫

∂Ω

F (Q) dωX

∣

∣

∣

∣

+ |ω0(X)|

≤
∫

∂Ω

φ(Q)k0(Q) dωX + |ω0(X)|

≤
∫

∂Ω

k0(Q) dωX + |ω0(X)| (since 0 ≤ φ ≤ 1)

≤
∫

∂Ω

k0(Q) dωX +
CL2

δ(0)
G0(A2R)

[

δ(X)

δ(0)

]α

. (3.15)

Note that

G0(A2R) ≤ sup
{δ(Y )<2R}

|∇G0(Y )|δ(A2R)

≤ 2NR (by Lemma 12)

=
Nδ(0)

4
.

Inserting this into (3.15) gives us

|∇G0(X)| ≤
∫

∂Ω

k0(Q) dωX + CNL2

[

δ(X)

δ(0)

]α

≤
∫

∂Ω

k0(Q) dωX +
CNL2

Bα
δ(X)α,

using Lemma 13 to obtain the final inequality. Because C and α depend only

on the NTA constant M , this is exactly what we wanted to prove.

3.3 The Inside Ball

In the remainder of this chapter, we prove that if the logarithm of the Poisson

kernel has small BMO-seminorm, relative to other geometric constants for ∂Ω,

then Ω is close to being a ball. In particular, we prove that Ω contains a ball,

and that it is contained in a ball, and that the radii of these two balls are very

close to one another. Ahlfors regularity plays in important role here.
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The following result makes use of the gradient estimates above on a Green’s

function near the boundary to show that Ω must contain a relatively large ball.

The radius of the ball must be, in fact, close to the radius of the ball whose

surface area is the same as that of ∂Ω. We define the function space BMO(∂Ω)

as follows: f ∈ BMO(∂Ω) if and only if

‖ f ‖BMO:= sup
Q∈∂Ω

sup
r>0

∫

−
∣

∣

∣

∣

f −
∫

−f dHn

∣

∣

∣

∣

dHn < ∞.

This quantity is a seminorm: ‖ f ‖BMO= 0 if and only if f = k Hn-almost

everywhere for some constant k. Because under our hypotheses, (∂Ω,Hn) is a

homogeneous space, the John-Nirenberg Inequality holds:

Hn

(∣

∣

∣

∣

f −
∫

−
∂Ω

fdHn

∣

∣

∣

∣

> ǫ

)

≤ Γe
−γǫ

‖f‖BMO Hn(∂Ω) for f ∈ BMO(∂Ω). (3.16)

Here, Γ > 0 and γ > 0 depend only on n, Hn(∂Ω) and the Ahlfors regularity

constant A.

Theorem 3. Consider a bounded, non-tangentially accessible domain Ω ⊂ Rn+1

with NTA constant M ≥ 1 such that 0 ∈ Ω. Let ω denote the harmonic measure

for Ω with pole at 0, and let h be the corresponding Poisson kernel. Write R =

δ(0), and assume that

(i) ∂Ω is bounded and Ahlfors regular,

i.e.
1

A
≤ Hn(B(Q, r) ∩ ∂Ω)

rn
≤ A, for some A ≥ 1

and for all Q ∈ ∂Ω, 0 < r < diam(Ω);

(ii) log h ∈ BMO(∂Ω,Hn), with ‖ log h ‖BMO= ǫ2
0 small; and

(iii) ω(B(Q, r)) ≤ Lrn for all Q ∈ ∂Ω, r ≥ 0.

There exists a positive function F defined on R+ with limηց0 F (η) = 0 such that

R ≥
[

σn

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)]− 1
n

.
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The function F depends only on the geometric data n, M , A, L and Hn(∂Ω).

Proof:

First observe that the assumption ω(B(Q, r)) ≤ Lrn implies h ≤ LA for Hn-

a.e. Q ∈ ∂Ω, since for all Lebesgue points Q of h we have

1

Hn(Br(Q))

∫

Br(Q)

h dHn → h(Q) as r → 0

and
1

Hn(Br(Q))

∫

Br(Q)

h dHn =
ω(Br(Q))

Hn(Br(Q))
≤ Lrn

1
A
rn

= LA.

Let G denote the Green’s function for Ω with pole at 0.

Consider the domain Ωt = {X ∈ Ω; G(X) > t} ∪ {0}. Let Gt denote the

Green’s function for Ωt with pole at 0. Observe that Gt(X) = max{G(X) − t, 0}.
The boundary of Ωt is {X ∈ Ω; G(X) = t}. According to Theorem 2, we have

|∇G(X)| ≤
∫

∂Ω

h(Q) dωX + Cδ(X)α

=

∫

{h≤ eǫ0
Hn(∂Ω)

}

h(Q) dωX +

∫

{h> eǫ0
Hn(∂Ω)

}

h(Q) dωX + Cδ(X)α

≤
∫

{h≤ eǫ0
Hn(∂Ω)

}

eǫ0

Hn(∂Ω)
dωX +

∫

{h> eǫ0
Hn(∂Ω)

}

h(Q) dωX + Cδ(X)α

≤
∫

∂Ω

eǫ0

Hn(∂Ω)
dωX +

∫

{h> eǫ0
Hn(∂Ω)

}

h(Q) dωX + Cδ(X)α

=
eǫ0

Hn(∂Ω)
+

∫

{h> eǫ0
Hn(∂Ω)

}

h(Q) dωX + Cδ(X)α (since ωX(∂Ω) = 1)

≤ eǫ0

Hn(∂Ω)
+ LA

∫

{h> eǫ0
Hn(∂Ω)

}

dωX + Cδ(X)α (since h ≤ LA)

=
eǫ0

Hn(∂Ω)
+ LAωX

({

h >
eǫ0

Hn(∂Ω)

})

+ C(n, M, L)δ(X)α. (3.17)

We would like to estimate the size of ωX({h > eǫ0

Hn(∂Ω)
}) in order to continue.

Suppose that for some Q ∈ ∂Ω we have

log h(Q) −
∫

−
∂Ω

log h dHn ≤ ǫ0.
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Then

log h(Q) ≤
∫

−
∂Ω

log h dHn + ǫ0,

and exponentiating both sides yields

h(Q) ≤ eǫ0 exp

(
∫

−
∂Ω

log h dHn

)

≤ eǫ0

∫

−
∂Ω

h dHn,

with the last estimate following from Jensen’s Inequality. Thus we have h(Q) ≤
eǫ0

Hn(∂Ω)
. This argument proves that

{

h >
eǫ0

Hn(∂Ω)

}

⊂
{

log h(Q) −
∫

−
∂Ω

log h dHn > ǫ0

}

⊂
{∣

∣

∣

∣

log h(Q) −
∫

−
∂Ω

log h dHn

∣

∣

∣

∣

> ǫ0

}

.

We can now employ the John-Nirenberg Inequality for BMO functions to

estimate

Hn

({∣

∣

∣

∣

log h(Q) −
∫

−
∂Ω

log h dHn

∣

∣

∣

∣

> ǫ0

})

,

and then using the hypothesis that ω(Br(Q)) ≤ Lrn, we will be able to turn this

into an estimate for

ω

({∣

∣

∣

∣

log h(Q) −
∫

−
∂Ω

log h dHn

∣

∣

∣

∣

> ǫ0

})

.

To make use of this fact about ω, we need to be more specific about the point

X so that we can employ Harnack’s inequality to derive a similar estimate for

ωX.

Let G = Φ − φ on Ω, where Φ is the fundamental solution of Laplace’s equa-

tion on Rn+1, Φ(Y ) = C
|Y |n−1 , and φ is the correction function satisfying







∆φ = 0 on Ω

φ = Φ on ∂Ω

Notice that Φ is positive, and therefore so is φ by the strong maximum principle.

Thus we have for Y ∈ ∂B δ(0)
4

(0) that

G(Y ) = Φ(Y ) − φ(Y ) ≤ Φ(Y ) =
C

(

δ(0)
4

)n−1 =
4n−1C

δ(0)n−1
.
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From Lemma 13 we have

δ(0) ≥
[

σnN

(n − 1)

]
1
n

.

Consequently,

G(Y ) ≤ 4n−1σ
1−2n

n
n (n − 1)

n−1
n

N
n−1

n

= C(n, L) for Y ∈ ∂B δ(0)
4

(0).

With this estimate, and the fact that G = 0 on ∂Ω, the maximum principle also

gives us

G(Y ) ≤ C(n, L) on R
n+1 \ B δ(0)

4

(0),

where we have extended G to be zero on Ωc.

If we assume that t is small enough so that ∂Ωt ⊂ Rn+1 \ B δ(0)
4

(0), Lemma

(4.1) in [9] now gives us

G(X) ≤ MC(n, L)δ(X)β for X ∈ ∂Ωt,

where β > 0 depends only on M . That is to say,

t ≤ MC(n, L)δ(X)β,

so

δ(X) ≥
(

t

MC(n, L)

) 1
β

.

Note also that for small t,

δ(0) ≥
(

t

MC(n, L)

)
1
β

,

so

min(δ(X), δ(0)) ≥
(

t

MC(n, L)

)
1
β

.

Let

Rt = sup{r > 0; Br(0) ⊂ Ωt}.

Then ∂Ωt ∩ ∂BRt(0) 6= ∅. Fix X ∈ ∂Ωt ∩ ∂BRt(0).
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The distance from 0 to X is

|X − 0| = Rt =
Rt

(

t
MC(n,L)

)
1
β

(

t

MC(n, L)

) 1
β

.

Because Ω is an NTA domain, there is a Harnack chain from 0 to X of length

at most Mk, where k is the least integer greater than log2

(

Rt

( t
MC(n,L))

1
β

)

. In

particular, if t is small enough, depending on M, L and n, then

k ≤ 2 log2







Rt
(

t
MC(n,L)

)
1
β






.

Now we apply Harnack’s inequality to each ball in the Harnack chain to obtain

that, for any nonnegative harmonic function u on Ω,

u(X) ≤ Mku(0) = 2(log2 M)ku(0) ≤







Rt
(

t
MC(n,L)

)
1
β







2 log2 M

u(0).

Since ωY
({∣

∣log h −
∫

−
∂Ω

log h dHn
∣

∣ > ǫ0

})

is a nonnegative harmonic function of

Y , it follows that

ωX

({∣

∣

∣

∣

log h −
∫

−
∂Ω

log h dHn

∣

∣

∣

∣

> ǫ0

})

≤







Rt
(

t
MC(n,L)

)
1
β







2 log2 M

ω({| logHn(∂Ω)h| ≥ ǫ0}).

We can apply (3.16) to get

ω

({∣

∣

∣

∣

log h −
∫

−
∂Ω

log h dHn

∣

∣

∣

∣

> ǫ0

})

≤ LAHn

({∣

∣

∣

∣

log h −
∫

−
∂Ω

log h dHn

∣

∣

∣

∣

> ǫ0

})

≤ Γe
−γǫ0

‖log h‖∗Hn(∂Ω).
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Therefore

ωX({| logHn(∂Ω)h| > ǫ0}) ≤







Rt
(

t
MC(n,L)

)
1
β







2 log2 M

Γe
−γǫ0

‖log h‖∗Hn(∂Ω)

= C(n, M, L)R
2 log2 M
t t−

2 log2 M
β Γe

−γǫ0
‖log h‖∗Hn(∂Ω).

We now take t = ǫ0 =
√

‖ log h ‖∗ to get

ωX({| logHn(∂Ω)h| > ǫ0}) ≤ C(n, M, L)ΓR
2 log2 M
t ǫ

−
2 log2 M

β

0 e
−γ
ǫ0 Hn(∂Ω).

The isoperimetric inequality gives us an a priori bound on Rt:

Rt ≤
(Hn(∂Ω)

σn

)
1
n

.

Thus we have

ωX({| logHn(∂Ω)h| > ǫ0}) ≤ C(n, M, L,Hn(∂Ω))Γǫ
−

2 log2 M
β

0 e
−γ
ǫ0 Hn(∂Ω).

We also know that the constants Γ and γ from the John-Nirenberg inequality

depend only on n, Hn(∂Ω) and A (the Ahlfors-regularity constant), so we obtain

ωX({| logHn(∂Ω)h| > ǫ0}) ≤ C(n, M, L, A,Hn(∂Ω))

(

ǫ
−

2 log2 M
β

0 e
−γ
ǫ0

)

.

Write

F1(ǫ) = LAC(n, M, L, A,Hn(∂Ω))
(

ǫ−
2 log2 M

β e
−γ
ǫ

)

,

where C(n, M, L, A,Hn(∂Ω)) is as in the previous line. This is a power function

of ǫ multiplied by a function that decays exponentially as ǫ → 0, so the whole

quantity approaches zero as ǫ does. We can now write

ωX({| logHn(∂Ω)h| ≥ ǫ0}) ≤
F1(ǫ0)

LA
,

and plugging this into (3.17) gives us

|∇G(X)| ≤ eǫ0

Hn(∂Ω)
+ F1(ǫ0) + C(n, M, L)δ(X)α.
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We can also bound δ(X) in terms of G(X) = t = ǫ0. An argument using Harnack

chains and the Harnack Inequality shows that

G(X) ≥ Cδ(X)α′

,

where C and α′ > 0 depend only on M and δ(0). Because δ(0) can be bounded

below in terms of L, we get

δ(X) ≤ C(n, M, L)G(X)
1
α′ .

Thus

|∇G(X)| ≤ eǫ0

Hn(∂Ω)
+ F1(ǫ0) + C(n, M, L)ǫα̃

0 ,

with α̃ > 0.

Setting F (η) = F1(η) + C(n, M, L)ηα̃, we see that F (η) → 0 as η → 0 and

|∇G(X)| ≤ eǫ0

Hn(∂Ω)
+ F (ǫ0).

The function F has the properties stated in the theorem.

Let G̃ denote the Green’s function for BRt(0) with pole at the origin. By the

comparison principle, we see that G̃ ≤ Gt on B(0, Rt), and we have G̃(X) =

Gt(X) = 0. Therefore

|∇G̃(P )| ≤ |∇Gt(P )| = |∇G(P )| ≤ eǫ0

Hn(∂Ω)
+ F (ǫ0).

We also know that

|∇G̃(X)| =
1

σn|X|n =
1

σnRn
t

≥ 1

σnRn
,

where R = sup{r > 0; B(0, r) ⊂ Ω}, because Rt ≤ R. Therefore

1

σnRn
≤ eǫ0

Hn(∂Ω)
+ F (ǫ0).

Consequently,

R ≥
[

σn

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)]− 1
n

,

as claimed.
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3.4 The Outside Ball

For this part of the argument, we rely on the fact above, that Ω contains a

relatively large ball. The idea then is to use Ahlfors regularity to show that the

boundary ∂Ω cannot stray too far from the inner ball.

Theorem 4. Let Ω, ω and h be as in Theorem 3, let R1 = δ(0) = sup{r; Br(0) ⊂
Ω}, and let R2 = inf{r > 0; Ω ⊂ Br(0)}. There exists a constant C > 0 depending

only on the parameters n, M, A, L and Hn(∂Ω) such that for sufficiently small ǫ0

we have

R2 ≤ R1(1 + Cǫ
1

2n2

0 ).

Proof: Let Q0 ∈ ∂Ω satisfy |Q0| = R2. Define a ‘projection’ on Rn+1 \ {0} by

P (X) =







X
|X|

R′
1 if |X| < R′′

1

X
|X|

R′′
1 if |X| ≥ R′′

1

,

where

R′
1 =

[

σn

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)]− 1
n

and R′′
1 = R′

1 + ǫ
1
2n
0 .

Notice that this R′
1 is the lower bound on the radius of the inner ball guaranteed

by Theorem 3.

R’1

R’’1
Ω

R’1

R’’1

Figure 3.1: The darkened arcs on the figure at right represent the image under

the projection P of the ellipse in the left figure.
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The idea is to show that the part of P (∂Ω) that gets projected onto ∂BR′′
1
(0)

can’t have large Hn measure, so that there isn’t much of ∂Ω that’s very far

away from ∂BR′
1
(0). Once we have control of the measure of this set, Ahlfors

regularity will allow us to control the actual distance from ∂BR′
1
(0).

Notice that the restriction of the projection to each set Bc
R′′ and BR′′ \ BR′

satisfies |P (X) − P (Y )| ≤ |X − Y | (even though it does not have this property

on their union); hence Hn(P (∂Ω)∩Bc
R′′) ≤ Hn(∂Ω∩Bc

R′′) and Hn(P (∂Ω)∩BR′′) ≤
Hn(∂Ω ∩ BR′′) (since BR′ ⊂ Ω). Therefore

Hn(P (∂Ω)) ≤ Hn(∂Ω).

Let

t =
Hn(P (∂Ω) ∩ ∂BR′′

1
(0))

Hn(∂BR′′
1
(0))

.

This is the fraction of ∂BR′′
1
(0) covered by the projection of ∂Ω under P . Then

1 − t ≤ Hn(P (∂Ω) ∩ ∂BR′
1
(0))

Hn(∂BR′
1
(0))

.

Thus we have

Hn(P (∂Ω)) = Hn(P (∂Ω) ∩ ∂BR′
1
(0)) + Hn(P (∂Ω) ∩ ∂BR′′

1
(0))

≥ (1 − t)σn[R′
1]

n + tσn(R′′
1)

n

= (1 − t)σn[R′
1]

n + tσn(R′
1 + ǫ

1
2n
0 )n.
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Therefore

Hn(∂Ω) ≥ Hn(P (∂Ω))

≥ (1 − t)σn

[

(

σn

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

))− 1
n

]n

+ tσn

[

(

σn

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

))− 1
n

+ ǫ
1
2n
0

]n

= (1 − t)

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1

+ t

[

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)− 1
n

+ σ
− 1

n
n ǫ

1
2n
0

]n

≥ (1 − t)

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1

t

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1

+
t

σn
ǫ

1
2
0

=

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1

+
t

σn

ǫ
1
2
0 .

In the second-to-last line we used the inequality (a + b)n ≥ an + bn for a, b ≥ 0.

We now have

Hn(∂Ω) ≥
(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1

+
t

σn
ǫ

1
2
0 ,

and solving for t yields

t ≤ Cǫ
− 1

2
0

[

Hn(∂Ω) −
(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1
]

. (3.18)

This give us an upper bound on the measure of P (∂Ω) ∩ ∂BR′′
1
(0) (more pre-

cisely, on the fraction, in terms of Hn-measure, of the sphere ∂BR′′
1
(0) covered

by P (∂Ω)).

The term in square braces is at most the order of ǫ0 (which can be seen by

looking at a Taylor series expansion of a − 1
a+x

for x near 0), so we obtain

t ≤ Cǫ
1
2
0 with C = C(n, M, L,Hn(∂Ω)).
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Now because the ball B|Q0|−R′′
1
(Q0) lies completely outside BR′′

1
(0), we get

1

A
(|Q0| − R′′

1)
n ≤ Hn(∂Ω ∩ B(Q0, |Q0| − R′′

1)) (by Ahlfors Regularity)

≤ Hn(∂Ω \ B(0, R′′
1))

= Hn(∂Ω) −Hn(∂Ω ∩ B(0, R′′
1))

≤ Hn(∂Ω) −Hn(P (∂Ω ∩ B(0, R′′
1)))

= Hn(∂Ω) −Hn(P (∂Ω) ∩ ∂B(0, R′
1))

≤ Hn(∂Ω) − (1 − t)Hn(∂B(0, R′
1))

= Hn(∂Ω) − (1 − t)σn

[

(

σn

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

))− 1
n

]n

= Hn(∂Ω) − (1 − t)

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1

= t

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1

+

[

Hn(∂Ω) −
(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1
]

≤ Cǫ0

(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1

+

[

Hn(∂Ω) −
(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1
]

≤ Cǫ0Hn(∂Ω) +

[

Hn(∂Ω) −
(

eǫ0

Hn(∂Ω)
+ F (ǫ0)

)−1
]

≤ Cǫ
1
2n
0 ,

where in the last line we used the Taylor expansion again to see that the term

in brackets is at most ǫ0, which is less than ǫ
1
2n
0 for small values of ǫ0. So we now

have
1

A
(|Q0| − R′′

1)
n ≤ Cǫ

1
2n
0 .

Hence

(|Q0| − R′′
1) ≤ Cǫ

1
2n2

0 (for C = C(n, M, L,Hn(∂Ω), A)).

Then since |Q0| = R2 and R1 ≥ R′
1 = R′′

1 − ǫ
1
2n
0 , we obtain

R2 − R1 ≤ Cǫ
1

2n2

0 ,
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that is,

R2 ≤ R1 + Cǫ
1

2n2

0 .

Using the lower bound on R1 obtained in Theorem 1, we can write this result

in the form

R2 ≤ R1(1 + Cǫ
1

2n2

0 ) (for C = C(n,Hn(∂Ω), A, L, M)).
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