Appendix D: Chi Square Test (Revised Fall 2009) 


Appendix D.      The Chi–Square Test—a statistical tool
Suppose that in studying the cross between two kinds of tomato plants, a scientist expects that half of the offspring will have green leaves and half will have yellow. Her expectation is based on Mendel’s laws and certain assumptions about the genes responsible for the formation of green and yellow leaves. Suppose, however, that in the actual experiment 671 out of 1240 seedlings have green leaves and 569 out of the 1240 have yellow leaves. Is this a minor difference, which is due merely to chance? Or is it a relatively large and significant deviation from the expected numbers? If it is different, does this mean that Mendel was wrong? Or my assumptions correct? Did the plants get mixed up in the greenhouse? It’s these type of questions and feedback in the scientific process is what keeps us honest and searching for answers. How can you answer these questions?

A statistical test has been devised which enables the scientist to determine whether a deviation from expected experimental results is large enough to be significant. This method is called the chi–square test 2–test). Please note that  2 is the name not a mathematical expression. The  2–test consists of two steps:


1.  Calculating the  2 value for the experiment in question and,


2.  Determining how often a  2 value that size is likely to be produced by chance alone. 

The  2 value is a measure of the amount of deviation between observed and expected experimental data that are in distinct classes. In mathematical shorthand, this value can be expressed as follows:
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where  2 is the name of the statistical test, ( means “the sum of all,” Ob stands for the observed number, and Ex stands for the expected number. To illustrate how this formula is used, let us find the 

 2 value  for the experiment described above. In this experiment we expect 620 or half of the plants to be green leafed and the other half (620) to be yellow–leaved plants.  But, 671 green and 569 yellow were actually observed. Therefore,
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Thus, the value of  2 is 8.4. Is this a significantly large value?

Mathematicians have derived an elaborate equation, which provides the basis for judging whether any  2 value is greater than can be expected by chance alone. From this equation the degrees of probability of some possible  2 values have been computed and are listed in the table at the end of this section. By consulting the table you will see that a  2 value of 8.4 with one degree of freedom is larger than any of the values listed. This means that there is less than one chance in one hundred that chance alone would produce this big a deviation from the expected results. By convention, when the likelihood of a deviation’s being due to chance  alone is (or less than) five chances in one hundred, it is considered a significant deviation. If this is so, then some factors are probably operating other than those on which the expected results were based. In the case of green– and yellow–

leafed tomato plants, for example, it was found that fewer of the yellow–leaved plants germinated and survived, because they were less hardy than the green–leaved plants.

The phrase degrees of freedom (abbreviated df), is a phrase that describes a complex relationship fundamental to statistical processes. For our purposes the important thing to note is the way it is calculated. The degrees of freedom in a system are usually defined as the number of classes minus one, (n-1). In the example of the tomato plants we had two classes, yellow and green leaves, therefore df = 2 - 1 = 1. There is only one degree of freedom in the tomato example.

How is the  2–test applied to experimental results involving more than two classes of objects or events? Suppose, for example, that a scientist has crossed pink–flowered four–o’clocks and obtained 236 offspring. From Mendel’s laws, the investigator expects that the offspring will be red–, pink–, and white–flowered in the ratio of 1:2:1. Among the 236 offspring, the investigator would expect 59 red–, 118 pink–, and 59– white–flowered plants. She finds that there are actually 66 red-, 115 pink–, and 55 white–flowered plants. The  2–test is applied as follows:
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df = 3 - 1 = 2

By consulting the probability table you will see that a  2 value of 1.18 for 2 degrees of freedom is really quite small. Between 50 and 70 times in one hundred this value might be produced by chance alone. The experimenter therefore concludes that the observed results actually do agree with the predicted results. 

Consider now an example taken from a situation where our theory does not give us a number for expected. The following experiment involves a new vaccine against an unusual infection that only attacks biology students. 

Equal numbers of students received the vaccine and the placebo (plain shot without the vaccine). In this group of students 862 cases of the infection occurred. Of these cases 112 received the vaccine and 750 received the placebo. The question we want to test is the effectiveness of the vaccine. For this kind of testing we first make a null hypothesis and then test it by the  2 method. 

The null hypothesis is that of the 862 cases of disease, just as many received the vaccine as received the placebo (i.e. a 1:1 ratio). The  2–test is applied as follows:
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df = 2 - 1 = 1

We would reject the null hypothesis that the vaccine group and the placebo group are samples from the same population since P<0.001. The conclusion from the study would be that there was a statistically significant effect with the use of the new vaccine on this infection.

The  2–test can be applied to any experiment where results involve distinct classes of objects, events, or types of anything. Furthermore, we don’t have to have any idea about what the expected results should be. Suppose, for example, we were studying the relationship between four types of stream habitat:  pools, runs, riffles, and cascading riffles. Each type of habitat is useful to salmon for 

spawning, feeding, and/or just getting on with life. A biologist goes out and measures the length of the different types of habitat on 200m of a particular stream. She collects the following data: 50m of pools, 45m of runs, 55m of riffles, and 50m of cascading riffles. Let’s assume, as a starting point, that salmon need equal lengths of the four different habitat types in order to thrive. Then,
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df = 4 - 1 = 3

We would accept our hypothesis that there are equal amounts of the four types of stream habitat. And it would appear that there may be some basis for our assumption that salmon need equal amounts of the four different types of habitat. But, it should be obvious that this is not where we stop. We would conduct further experiments to begin to understand why. 

In analyzing data with statistics, it should be emphasized that the end product of research experiments are considered “conditional truths.” In research there is always the probability of error which will influence whether you reject or do not

Table of Chi–square (2) Values

Please Note....
· Chi-square values are in bold print.

· Probability values are in parentheses
· A note on interpreting probability: (P):  0.95 = 95%, 0.90 = 90%, 0.80 = 80%, etc.
	
	
	
	
	
	
	
	
	
	

	
	Deviation From Hypothesis Not Significant

	Deviation

Significant
	Deviation Highly Significant
	Deviation Very Highly Significant

	Degrees of

Freedom
	Probability Values (P)
	Probability Values (P)

	
	(0.95)
	(0.90)
	(0.70)
	(0.50)
	(0.30)
	(0.10)
	(0.05)
	(0.01)
	(0.001)

	1
	0.004
	0.016
	0.15
	0.46
	1.07
	2.71
	3.84
	6.64
	10.83

	2
	0.10
	0.21
	0.71
	1.39
	2.41
	4.60
	5.99
	9.21
	13.82

	3
	0.35
	0.58
	1.42
	2.37
	3.66
	6.25
	7.82
	11.34
	16.27

	4
	0.71
	1.06
	2.20
	3.36
	4.88
	7.78
	9.49
	13.28
	18.47

	
	Chi–square values consistent with hypothesis
	Chi–square Not consistent with Hypothesis
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