

Controls Table 1. Control Data for Sugar Fermentation of Yeast when mixed with Gartic Juice					
Trial #	5% Sucrose (mL)	Yeast (mL)	Garlic Juice (mL)	DI Water (mL)	Rate of Reaction (kPa/min)
1				10.0	0.116
2	2.5			7.5	0.192
3			2.5	7.5	0.093
4		2.5		7.5	1.092
5		2.5			2.453

Theoretical Reasoning

- *All preserved garlic contains phosphoric acid, giving the juice a pH of 2.
- "Garlic must contain some "active ingredient" that is broken down during preservation in phosphoric acid.
- *Garlic contains lots of sugars that, when introduced to the yeast, provide extra fuel for fermentation.

How Garlic is supposed to work

- According to the USDA garlic is extremely rich in Thiosulfate compounds which are known to kill yeast cells
- The active ingredient in a prescription medication for yeast infections (sold commercially as Versiclear) is Sodium Thiosulfate.
- Thiosulfate compounds are only stable at Basic and Neutral pH. At acidic pH they decompose to Elemental Sulfur and a Sulfite ion which will not kill yeast.

- Minced Garlic is preserved in Phosphoric Acid giving it a pH of 2 which is very acidic, resulting in all of the Thiosulfate compounds being broken down.
- This reaction explains the lack of inhibition exhibited in our experiment using preserved garlic.
- Garlic naturally contains fairly high sugar concentrations which explains the increase in fermentation exhibited with the preserved garlic present.

Conclusion

 According to our results preserved garlic did not inhibit fermentation at all, and in most cases actually accelerated it.

*Fresh Garlic, at similar concentrations showed a dramatically different effect, fermentation was substantially inhibited at concentrations above 1%.

Possible Further experiment(s)

•Minimum concentration thiosulfate(s) required to inhibit fermentation

*Effect of different thiosulfate compounds (at same relative concentration on fermentation

Works Cited

Lexi-Comp, Inc. (n.d.). Halifux Health: Sodium Thiosulfate [Medical form of Thiosulfate used to treat yeast infection]. Retrieved November 23, 2008, from https://www.halifaxhealth.org/HealthInformation/Content.aspx?chunkiid=340383

MetaCyc. (n.d.). MetaCyc: Nucleic Acids Res. 34:D511-6. 2006 [Information on Thiosulfates]. Retrieved November 23, 2008, from http://biocyc.org/META/ NEW-IMAGE?object=PWY-5350

Tokarz, L. (2007, September 18). Garlic's Goodness Best Released With a Crush. In News from the USDA [Health benefits of garlic and related componds.]. Retrieved November 23, 2008, from United States Department of Agriculture Web site: http://www.ars.usda.gov/is/pr/2007/070918.htm