Influenza: Swine and Avian Flu Lecture Notes
Biol 100 – K. Marr

- Reading assignments in Essential Biology
 - Chapter 10: Viruses (pp. 189 – 195)
- Optional Reading
 - Novel H1N1 Flu Situation Update: http://www.cdc.gov/H1N1flu/update.htm
 - Questions & Answers: H1N1 Flu (Swine Flu) and You: http://www.cdc.gov/H1N1flu/qa.htm

- Genetic material (DNA or RNA) surrounded by a protein coat
- No cellular structure
- No cell organelles
- Exhibit some but not all characteristics of living organisms
- Can’t carry out metabolism or reproduce by itself
- Can only reproduce inside a host cell

What is a virus?

- Viruses — genes in packages!
 - Very small — about the size of a ribosome
 - Millions could fit on the head of a pin
- Viruses sit on the fence between life and nonlife

Importance of Viruses

1. Cause many diseases in plants, animals & humans
 - Some viruses are easily controlled with a vaccine — Why?
 - Mumps, Measles, Smallpox, Polio
 - Some viruses are difficult to control with a vaccine — Why?
 - Common cold, Influenza (Flu), HIV

2. Used as vectors in biotechnology
 - Used to insert therapeutic genes into a host cell chromosome
 - Use viruses with provirus in life cycle

Herpes (DNA Virus)
- Cold sores
- Herpes virus may rest inactive inside host cells for long periods

Adenovirus (DNA Virus)
- Adenoviruses cause various respiratory diseases
- Electron micrograph of Human Adenovirus (27,000x)

Polio Virus (ssRNA serves as mRNA)
- Polio is easily prevented with a vaccine — Why?
Measles (ssRNA template for mRNA synthesis)

Measles: a childhood disease that can be prevented with a vaccine—why?

Couple at AIDS quilt (HIV: ssRNA \(\rightarrow\) dsDNA)

HIV is very difficult to control with a vaccine—why?

1918 Influenza epidemic (ssRNA template for mRNA synthesis)

Influenza Today

- 250,000 to 500,000 deaths globally/yr.
- 36,000 deaths and >200,000 hospitalizations/yr. in U.S.
- $37.5 billion in economic costs/yr. in U.S. related to influenza and pneumonia.
- Ever-present threat of pandemic influenza.

Sources: CDC, WHO, Am. Lung. Assoc.

Flu pandemics occurred in 1889, 1900, 1918, 1957, 1968, and 1977

- Pandemics occur every 10–50 years
- From 20 to 40% of population is infected
- Projections for the next pandemic in USA:
 - 207,000 deaths, 734,000 hospitalizations, 42 million outpatient visits
- Estimated economic impact: $70-170 billion

Now enter ...
H5NI: the avian flu virus
H1N1: the swine flu virus

What is H1N1 (swine flu)?

Source: http://www.cdc.gov/H1N1flu/qa.htm (accessed 5/28/09)

- A new virus causing illness in people
 - 1st detected in people in the U.S. in April 2009
- Other countries, including Mexico and Canada, have reported people sick with this new virus.
- Spreading from person-to-person
 - probably in the same way as the seasonal influenza virus
 - Not known how easily the virus spreads between people
 - Not known at this time how severe this new H1N1 flu virus will be in the general population
- As of May 27, 2009: 11 deaths out of 7927 confirmed cases in the U.S.

(Source: http://www.cdc.gov/h1n1flu/update.htm)
Why is this new H1N1 virus sometimes called “swine flu”?

Source: http://www.cdc.gov/H1N1flu/qa.htm (accessed 5/28/09)

• Because many of its genes are similar to influenza viruses found in pigs. But…
 – this new virus is very different from the normal virus found in North American pigs.

• The new virus has…
 – two genes from flu viruses found in pigs in Europe and Asia, avian genes and human genes.
 • Scientists call this a “quadruple reassortant” virus.

Why do new strains of influenza and bird flu usually arise in Asia?

Generation of a Pandemic Influenza Strain

Antigenic shift is due to genome reassortment within intermediate hosts drives flu epidemics and pandemics

Source: www.cdc.gov/eid Vol. 12, No. 1, Jan. 2006

Background: Influenza Virus Structure

1. Flu viruses are named by the type of surface proteins
 a. Hemagglutinin
 • Helps virus enter cell
 • Type A infects humans, birds and pigs
 • Type A has ~20 different subtypes

Flu Viruses Currently infecting...
 • Humans: H1N1, H1N2, and H3N2
 • Avian Flu Virus: H5N1

2. Named for the type of surface proteins
 a. Neuraminidase
 • Helps virus exit cell
 • 9 subtypes

 b. Currently infecting Humans: H1N1, H1N2, and H3N2

3. Influenza viral genome
 • ssRNA
 • 8 segments (pieces)
 • One gene per segment

Avian Flu Virus: H5N1
 • Transmitted from birds to humans
 • No evidence of human to human transmission
 • Antiviral drugs: Tamiflu
 – a neuraminidase inhibitor
 – Consequences of its action?
Genetic Changes in Influenza Viruses

1. **Antigenic drift** – due to errors in replication and lack of repair mechanism (i.e. no proofreading) to correct errors
 - Results in ____________ changes

2. **Antigenic shift** - reassortment of genetic materials when concurrent infection of different strains occurs
 - Results in ____________ changes

Emergence of New Influenza Subtypes

Antigenic shift is due to genome reassortment within intermediate hosts drives flu epidemics and pandemics

Where do the “new flu” viruses come from?

Antigenic Drift: mutations result in changes to the Hemagglutinin (HA) molecules

- RNA replication is error prone
- New HA types are created frequently
- Requires new vaccine every “season”
- What is a vaccine?

Vaccines: Protection against viruses

1. **What is a vaccine?**
 - Made of a weakened or killed pathogen (e.g. bacterium or virus) or a portion of the pathogen’s structure
 - Stimulates antibody production or cellular immunity against the pathogen

2. **Vaccines stimulate the production of memory cells**
 - Give long-term protection against a specific antigen

3. **Why are vaccines ineffective against the flu virus?**
 - Why will this year’s flu vaccine be ineffective next year?

4. **Why are vaccines effective against DNA viruses?**
 - e.g. small pox

Smallpox

(dsDNA → dsDNA)

Smallpox has been irradiated worldwide due to a very successful vaccine

Why are vaccines for DNA viruses so successful?