Chapter 4: The Major Classes of Chemical Reactions
4.1 The Role of Water as a Solvent
4.2 Writing Equations for Aqueous Ionic Reactions
4.3 Precipitation Reactions
4.4 Acid-Base Reactions
4.5 Oxidation-Reduction (Redox) Reactions
4.6 Elemental Substances in Redox Reactions
4.7 Reversible Reactions: An Introduction to Chemical Equilibrium

Role of Water as a Solvent

- Why do some aqueous solutions conduct electricity and others do not?
- Dissociation of Ionic Compounds
- Ionic compounds dissociate into ions when dissolved in water
$\mathrm{NaCl}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{Na}^{+}{ }_{(\text {aq) }}+\mathrm{Cl}^{-}{ }_{(\text {(aq) }}$
- Resulting solution is called an electrolyte
- Electrolytes conduct electricity.....Why?

Ionic Compounds are Strong Electrolytes

- Electrolyte
- A substance that conducts a current when dissolved in water.
- Strong Electrolytes
- Soluble ionic compound dissociate completely
- may conduct a large current
- Animation

Fig. 4.3

Electron Distribution in Molecules of

 H_{2} and $\mathrm{H}_{2} \mathrm{O}$A

B

D

Fig. 4.2

Soluble vs. Insoluble Ionic Compounds
What determines the solubility of an Ionic Compound?

- Solubility of NaCl in water at $20^{\circ} \mathrm{C}=365 \mathrm{~g} / \mathrm{L}$
- Solubility of MgCl_{2} in water at $20^{\circ} \mathrm{C}=542.5 \mathrm{~g} / \mathrm{L}$
- Solubility of AlCl_{3} in water at $20^{\circ} \mathrm{C}=699 \mathrm{~g} / \mathrm{L}$
- Solubility of PbCl_{2} in water at $20^{\circ} \mathrm{C}=9.9 \mathrm{~g} / \mathrm{L}$
- Solubility of AgCl in water at $20^{\circ} \mathrm{C}=0.009 \mathrm{~g} / \mathrm{L}$
- Solubility of CuCl in water at $20^{\circ} \mathrm{C}=0.0062 \mathrm{~g} / \mathrm{L}$

Nonelectrolytes

- Their solutions do not conduct electricity.......Why?
- Only neutral molecules present
- Most molecular (covalent) substances produce neutral molecules in solution
- e.g. Sucrose, glucose, methanol, ethanol....
- Many polar covalent molecules ionize in solution
- E.g. $\mathrm{HCl}_{(\mathrm{g})}$, Organic acids: e.g. $\mathrm{CH}_{3} \mathrm{COOH}$

Solubility of Covalent Compounds in Water

Covalent compounds that are insoluble in water

- Do not contain a polar center
- Have little or no interactions with water molecules

Examples

- Hydrocarbons in gasoline and oil

$$
\begin{aligned}
& \text { Octane }=\mathrm{C}_{8} \mathrm{H}_{18} \\
& \text { Benzene }=\mathrm{C}_{6} \mathrm{H}_{6}
\end{aligned}
$$

- Oil spills: oil will not mix with the water and forms a layer on the surface!

Write the equation for the dissociation of the following compounds in water

- Aluminum Chloride, AlCl_{3}
- Ammonium Sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
- Ammonium Hydroxide, $\mathrm{NH}_{4} \mathrm{OH}$

Determining Moles of Ions in Aqueous Solutions of Ionic Compounds

Problem: How many moles of each ion are in each of the following:
a) 4.0 moles of sodium carbonate dissolved in water

$$
\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{~s})} \stackrel{\mathrm{H}_{2} \mathrm{O}}{ } \quad 2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{CO}_{3}^{-2}{ }_{(\mathrm{aq})}
$$

b) 81.1 g of Iron (III) Chloride dissolved in water

$$
\left(\mathrm{FeCl}_{3}=162.2 \mathrm{~g} / \mathrm{mol}\right)
$$

Reactions between Aqueous Ionic Compounds

- Predict what will happen if the following solutions are mixed:
$\mathbf{P b}\left(\mathrm{NO}_{3}\right)_{(\mathrm{aq})}+\mathrm{NaI}_{(\mathrm{aq})}$

The Reaction of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and Na

Fig. 4.5

Precipitation Reactions: A Solid Product is Formed
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{(\mathrm{aq})}+\mathrm{NaI}_{(\mathrm{aq})} \leadsto \mathrm{Pb}_{(\mathrm{aq})}+2 \mathrm{NO}_{3^{-}(\mathrm{aq})}+\mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{I}_{(\mathrm{aq})}^{-}$
Vs.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{NaI}_{(\mathrm{aq})} \longrightarrow \mathrm{PbI}_{2(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\mathrm{aq})}$

- Why does a precipitate of PbI_{2} form?

Table 4.1 Solubility Rules For Ionic Compounds in Water
Soluble lonic Compounds

1. All common compounds of Group $1 \mathrm{~A}(1)$ ions ($\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$, etc.) and ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right)$are soluble.
2. All common nitrates $\left(\mathrm{NO}_{3}^{-}\right)$, acetates $\left(\mathrm{CH}_{3} \mathrm{COO}\right.$ or $\left.\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}\right)$and most perchlorates $\left(\mathrm{ClO}_{4}{ }^{-}\right)$are soluble.
3. All common chlorides (Cl -), bromides (Br) and iodides (l) are soluble, except those of $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Cu}^{+}$, and $\mathrm{Hg}_{2}{ }^{2+}$.

Insoluble lonic Compounds

1. All common metal hydroxides are insoluble, except those of Group $\mathbf{1 A (1) ~ a n d ~ t h e ~ l a r g e r ~ m e m b e r s ~ o f ~ G r o u p ~ 2 A (2) (b e g i n n i n g ~ w i t h ~} \mathrm{Ca}^{2+}$).
2. All common carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right.$) and phosphates $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ are insoluble, except those of Group $1 \mathrm{~A}(1)$ and $\mathrm{NH}_{4}{ }^{+}$.
3. All common sulfides are insoluble except those of Group 1A(1), Group 2A(2) and $\mathrm{NH}_{4}{ }^{+}$.

Precipitation Reactions: Will a Precipitate Form?

a) $\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$
b) $\mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}$

Precipitation Reactions: Will a Precipitate Form?
$\mathrm{KCl}_{(\mathrm{aq})}+\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{aq})}=\mathrm{K}_{(\mathrm{aq})}^{+}+\mathrm{Cl}_{(\mathrm{aq})}+\mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{NO}_{3\left({ }_{(\mathrm{aq})}^{-}\right.}^{-}$

- Will a ppt. Form??
-Solubility table/rules are needed
-See Table 1, Chapter 4

Predicting Whether a Precipitation Reaction Occurs \& Writing Equations

$$
\begin{aligned}
& \text { Molecular Equation } \\
& \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightleftharpoons \mathrm{CaSO}_{4(\mathrm{~s})}+\mathrm{NaNO}_{3(\mathrm{aq})} \\
& \text { Total Ionic Equation } \\
& \left.\mathrm{Ca}^{2+}{ }_{(\mathrm{aq})}\right)^{2} \mathrm{NO}_{3^{-}{ }_{(\mathrm{aq})}}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{SO}_{4}^{-2}{ }_{(\mathrm{aq})} \Rightarrow \mathrm{CaSO}_{4(\mathrm{~s})}+2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{NO}_{3^{-}(\mathrm{aq})} \\
& \mathbf{C a}^{2+}{ }_{(\mathrm{aq})}+\mathbf{S O}^{-2}{ }_{(\text {aq) }} \\
& \text { Net Ionic Equation } \\
& \text { - Spectator Ions are } \mathbf{N a}^{+} \text {and } \mathbf{N O}_{3}{ }^{-} \\
& \text {- Balance by Charge and Mass!! }
\end{aligned}
$$

Fig. 4.4

Strong vs. Weak Acids and Bases

- Acids and bases

\rightarrow May be strong or weak electrolytes
$>$ Strength determined by the degree of ionization in water
$>$ Strong acids and bases ionize completely, and are strong electrolytes.
$>$. Weak acids and bases ionize weakly and are weak electrolytes

Table 4.2 Selected Acids and Bases

Acids	Bases
Strong	Strong
hydrochloric acid, HCI	sodium hydroxide, NaOH
hydrobromic acid, HBr	potassium hydroxide, KOH
hydroiodic acid, HI	calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}$
nitric acid, HNO_{3}	strontium hydroxide,
sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Sr}(\mathrm{OH})_{2}$
perchloric acid, HClO_{4}	barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$
Weak	Weak
hydrofluoric acid, HF	ammonia, NH_{3}
phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$	
acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$ (or $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$)	

Strong vs. Weak Acids and Bases
- Acids and bases
$>$ May be strong or weak electrolytes
$>$ Strength determined by the degree of
ionization in water
$>$ Strong acids and bases ionize completely,
and are strong electrolytes.
$>$. Weak acids and bases ionize weakly and
are weak electrolytes

Bases

- Bases

-substances that produces OH^{-}ions when dissolved in water.
$\mathrm{NaOH}_{(\mathrm{s})} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathbf{O H}^{\mathbf{1 -}_{(a q)}}$
$\mathbf{N H}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \longrightarrow \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathbf{O H}^{\mathbf{1}^{-}{ }_{(\mathrm{aq})}}$

$$
\mathrm{H}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \longrightarrow \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-1}(\mathrm{aq})
$$

Fig. 4.7

Strong Acids and the Molarity of H^{+}Ions in Aqueous Solutions of Acids

Problem: What is the molarity of the sulfate and hydronium ions in a solution prepared by dissolving 155 g of sulfuric acid into sufficient water to produce 2.30 Liters of acid solution?
$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{I})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow 2 \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{SO}_{4}^{-2}{ }_{(\mathrm{aq})}$

Metathesis Reactions (Double displacement or double replacement reactions)
$\mathbf{A B}(\mathrm{aq})+\mathbf{C D}(\mathrm{aq}) \longrightarrow \mathbf{C B}+\mathbf{A D}$
$\frac{\text { Only occur if one of the following form }}{- \text { Precipitate (ppt) }}$
- Gas
- Weak electrolyte (e.g. acid-base reactions to form $\mathrm{H}_{2} \mathrm{O}$)

Writing Balanced Equations for Neutralization Reactions

Problem: Write balanced molecular and net ionic equations for the following chemical reactions:
a) Calcium hydroxide(aq) and hydrochloric acid(aq)
b) Lithium hydroxide(aq) and sulfuric $\operatorname{acid}(a q)$

Acid - Base Reactions: Neutralization Rxns.

The generalized reaction between an Acid and a Base is:

$$
\mathrm{HX}_{(\mathrm{aq})}+\mathrm{MOH}_{(\mathrm{aq})} \quad \Longrightarrow \mathrm{MX}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}
$$

$$
\text { Acid }+ \text { Base }=\text { Salt }+ \text { Water }
$$

Finding the Concentration of Base from an Acid - Base Titration (I)
Problem: A titration is performed between sodium hydroxide and potassium hydrogenphthalate (KHP) to standardize the base solution, by placing $\mathbf{5 0 . 0 0} \mathbf{~ m g}$ of solid potassium hydrogenphthalate in a flask with a few drops of an indicator. A buret is filled with the base, and the initial buret reading is $\mathbf{0 . 5 5 ~ \mathbf { ~ m l }}$; at the end of the titration the buret reading is $\mathbf{3 3 . 8 7} \mathbf{~ m l}$. What is the concentration of the base? Molar mass of KHP is 204.2 g/mole
$\mathrm{HKC}_{8} \mathrm{H}_{4} \mathrm{O}_{4(\mathrm{aq})}+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{KC}_{8} \mathrm{H}_{4} \mathrm{O}_{4(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}$

Fig. 4.8

Finding the Concentration of Base from an Acid - Base Titration (II)
moles KHP $=\frac{50.00 \mathrm{mg} \mathrm{KHP}}{\underline{204.2 \mathrm{~g} \mathrm{KHP}}} \times \frac{1.00 \mathrm{~g}}{1000 \mathrm{mg}} \quad=0.00024486 \mathrm{~mol} \mathrm{KHP}$

Volume of base $=$ Final buret reading - Initial buret reading $=33.87 \mathrm{ml}-0.55 \mathrm{ml}=33.32 \mathrm{ml}$ of base
one mole of acid $=$ one mole of base; therefore 0.00024486 moles of acid will yield 0.00024486 moles of base in a volume of 33.32 ml .
molarity of base $=\underline{0.00024486 \text { moles }}=\mathbf{0 . 0 7 3 4 8 6 7 9}$ moles per liter 0.03332 L
molarity of base $=0.07349 \mathrm{M}$

Fig. 4.9

$$
\text { Acid + Base } \longrightarrow \text { Salt }+\mathrm{H}_{2} \mathrm{O}
$$

Oxidation-Reduction Reactions

- "Redox Reactions"
- Involve the transfer of one or more electrons from one substance to another
- Examples
- Formation of compounds from its elements and vice versa
- Combustion reactions
- Reactions that produce electricity in batteries
- Cellular Respiration (energy production in cells) Objectives
- Determine if a reaction is a redox reaction and identify the substances that are oxidized and reduced
- To balance simple redox reactions

Finding the Concentration of Acid from an Acid - Base Titration

Volume (L) of base (difference in buret readings)

Moles of base

molar ratio

Moles of acid

volume (L) of acid

```
M (mol/L) of acid
```


An Acid-Base Reaction That Forms a Gaseous Product

Molecular equation
$\mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}(29)+\mathrm{CO}_{2}(9)+\mathrm{H}_{2} \mathrm{O}(9)$

Total ionic equation
$\mathrm{Na}^{+}(a q)+\mathrm{HCO}_{3}(a q)+\mathrm{CH}_{3} \mathrm{COOH}_{(a q)} \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}\left((a q)+\mathrm{Na}^{+}(2 q)+\mathrm{CO}_{2}(9)+\mathrm{H}_{2} \mathrm{O}(9)\right.$
Net ienic equation
$\mathrm{HCO}_{5}^{-}(a q)+\mathrm{CH}_{3} \mathrm{COOH}(a q) \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

The reaction of acid with carbonates or bicarbonates will produce carbon dioxide gas that is released from solution as a gas in the form of bubbles that leave the solution.
Fig. 4.10

Oxidation and Reduction

- Oxidation

- Loss of Electrons

- Reduction

-Gain of Electrons

- L.E.O. the Lion said G.E.R.

General Rules for Assigning an Oxidation Number

1. For an atom in its elemental form $\left(\mathrm{Na}, \mathrm{O}_{2} \mathrm{Cl}_{2}\right.$, etc. $)$ the Ox. No. = 0
2. For monotomic ions: $\mathbf{O x}$. No. $=$ ion charge
3. The sum of Ox. No. values for the atoms in a compound equals zero.
4. Polyatomic ions: The sum of the Ox. No. values for the atoms in a equals the ion charge.

Sample Problem 4.6 Determining the Oxidation Number of an Element

PROBLEM: Determine the oxidation number (O.N.) of each element in.....
(a) zinc chloride
(b) sulfur trioxide
(c) nitric acid

PLAN: The O.N.s of the ions in a polyatomic ion add up to the charge of the ion and the O.N.s of the ions in the compound add up to zero. SOLUTION:
(a) ZnCl_{2}. The O.N. for zinc is +2 and that for chloride is -1 .
(b) SO_{3}. Each oxygen is an oxide with an O.N. of -2. Therefore the O.N. of sulfur must be +6 .
(c) HNO_{3}. H has an $\mathrm{O} . \mathrm{N}$. of +1 and each oxygen is -2. Therefore the N must have an O.N. of +5 .

Oxidation Numbers

- Rules for Assigning Oxidation Numbers (Table 4.3, page 148, 3ed) Examples
- $\mathrm{Ca}, \mathrm{Ca}^{2+}, \mathrm{CaCl}_{2}, \mathrm{CuSO}_{4}$
- $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HNO}_{3}, \mathrm{NO}_{3}{ }^{\mathbf{1 -}}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HCO}_{3}{ }^{1-}$
- $\mathrm{Na}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{ClO}_{2}, \mathrm{FCl}, \mathrm{MgH}_{2}, \mathrm{BH}_{3}$

Oxidation Number: Charge an atom would have if electrons in each of its bonds belonged entirely to the more electronegative element

Specific Rules for Assigning an Oxidation Number

1. Group $\mathbf{1 A}=+1$ in all compounds
2. Group $2 \mathbf{A}=+2$ in all compounds
3. Hydrogen $=+1$ in combination with nonmetals
4. Fluorine $=-1$ in all compounds
5. Oxygen $=-1$ in peroxides $\left(\mathrm{O}_{2}{ }^{2-}\right)$
$=-2$ in all other compounds (except with F)
6. Group 7A $=-1$ in combination with metals, nonmetals (except O), and other halogens lower in the group

Oxidizing Agents vs Reducing Agents

- Oxidizing Agent
- A substance that causes oxidation
- It is reduced in the process....Why?
- Reducing Agent
- A substance that causes reduction
- It is oxidized in the process....Why?
- Redox Reactions
- Reaction in which oxidation numbers change

Use of Oxidation Numbers to Identify Oxidation and Reduction

- Identify the substances that are oxidized and reduced in the following examples

$$
\begin{aligned}
& \mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \\
& \mathrm{S}_{8(\mathrm{~s})}+12 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 8 \mathrm{SO}_{3(\mathrm{~g})} \\
& \mathrm{NiO}_{(\mathrm{s})}+\mathrm{CO}_{(\mathrm{g})} \rightarrow \mathrm{Ni}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
\end{aligned}
$$

- Identify the oxidizing and reducing agents in each reaction

Use of Oxidation Numbers to Identify Oxidation and Reduction

- Identify the substances that are oxidized and reduced in the following examples

$$
\mathbf{N}_{2(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

- Identify the oxidizing and reducing agents in each reaction

Use of Oxidation Numbers to Identify Oxidation and Reduction

- Oxidation occurs if the oxidation number increases. \qquad Why?
- Reduction occurs if the oxidation number decreases.. \qquad Why?
- Practice. \qquad

Use of Oxidation Numbers to Identify Oxidation and Reduction

- Identify the substances that are oxidized and reduced in the following examples
$2 \mathrm{Ag} \mathrm{NO}_{3(\mathrm{aq})}+\mathrm{Cu}{ }_{(\mathrm{s})} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+2 \mathrm{Ag} \mathrm{g}_{(\mathrm{s})}$
- Identify the oxidizing and reducing agents in each reaction

Period			Main	Group	Elem	ents		VIIIA
1	$\begin{array}{r} \mathrm{H} \\ +1 \\ \hline \end{array}$	IIA	IIIA	IVA	VA	VIA	VIIA	He
2	$\begin{gathered} \mathbf{L i} \\ +1 \end{gathered}$	$\begin{aligned} & \mathrm{Be} \\ & +2 \end{aligned}$	$\begin{aligned} & \text { B } \\ & +3 \end{aligned}$	$\begin{gathered} C \\ +4,+2 \\ -1,-4 \end{gathered}$	$\begin{gathered} \mathbf{N} \\ \text { all from } \\ +5 \Leftrightarrow t-3 \end{gathered}$	$\begin{gathered} 0 \\ -1,-2 \end{gathered}$	F	Ne
3	$\begin{gathered} \mathrm{Na} \\ +1 \end{gathered}$	$\begin{gathered} \mathbf{M g} \\ +2 \end{gathered}$	$\begin{aligned} & \text { Al } \\ & +3 \end{aligned}$	$\begin{gathered} \mathrm{Si} \\ +4,-4 \end{gathered}$	$\left\lvert\, \begin{gathered} \mathbf{P} \\ +5,+3 \\ -3 \end{gathered}\right.$	$\begin{gathered} \mathbf{S} \\ +6,+4 \\ +2,-2 \end{gathered}$	$\begin{aligned} & -1 \mathrm{Cl} \\ & +7,+5 \\ & +3,+1 \\ & \hline \end{aligned}$	Ar
4	$\begin{array}{r} \mathbf{K} \\ +1 \end{array}$	$\begin{aligned} & \text { Ca } \\ & +2 \end{aligned}$	$\begin{array}{r} \mathbf{G a} \\ +3,+2 \end{array}$	$\begin{aligned} & \begin{array}{r} \mathrm{Ge} \\ +4,+2 \\ -4 \\ \hline \end{array} \mathrm{e} \\ & \hline \end{aligned}$		$\begin{gathered} \mathbf{S e} \\ +6,+4 \\ -\mathbf{- 2} \end{gathered}$	$\begin{array}{\|l\|} \hline-1 \mathrm{Br} \\ +7,+5 \\ +3,+1 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Kr} \\ & +2 \end{aligned}$
5	$\begin{aligned} & \mathbf{R b} \\ & +\mathbf{1} \end{aligned}$	$\begin{aligned} & \mathrm{Sr} \\ & +2 \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { In } \\ +3,+2 \\ +1 \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \mathrm{Sn} \\ +4,+2, \\ -4 \\ \hline \end{array}$	$\begin{gathered} \begin{array}{c} \mathbf{S b} \\ +5,+3 \\ -3 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Te} \\ +6,+4 \\ -2 \end{gathered}$	$\begin{array}{\|l\|} \hline-1 \text { I } \\ +7,+5 \\ +3,+1 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \mathrm{Xe} \\ +6,+4 \\ +2 \end{array}$
6	$\begin{gathered} \text { Cs } \\ +1 \end{gathered}$	Ba +2	$\begin{gathered} \text { Tl } \\ +3,+1 \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ +4,+2 \end{gathered}$	Bi +3	$\begin{gathered} \text { Po } \\ +6,+4 \\ +2,-2 \end{gathered}$	$\begin{array}{\|c} \hline-1 \text { At } \\ +7,+5 \\ +3,+1 \end{array}$	$\begin{array}{r} \mathbf{R n} \\ +2 \end{array}$

Balancing REDOX Equations: The Oxidation Number Method

Step 1) Assign oxidation numbers to all elements in the equation.
Step 2) From the changes in oxidation numbers, identify the oxidized and reduced species.
Step 3) Compute the number of electrons lost in the oxidation and gained in the reduction from the oxidation number changes. Draw tie-lines between these atoms to show electron changes.
Step 4) Multiply one or both of these numbers by appropriate factors to make the electrons lost equal the electrons gained, and use the factors as balancing coefficients.
Step 5) Complete the balancing by inspection, adding states of matter.

REDOX Balancing Using Ox. No. Method

electrons lost must = electrons gained;
Therefore, multiply the hydrogen reaction by 2 to balance the equation

Sample Problem 4.8 Balancing Redox Equations by the Oxidation Number Method
PROBLEM: Use the oxidation number method to balance the following equation:
(a) $\mathrm{Cu}(s)+\mathrm{HNO}_{3}(a q) \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{NO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(l)$

SOLUTION:

O.N. of Cu increases because it loses 2 e ; it is oxidized and is the reducing agent. O.N. of N decreases because it gains1e-; it is reduced and is the oxidizing agent.

[^0]Sample Problem 4.8 Balancing Redox Equations by the Oxidation Number Method
continued

Multiply by 2 to have whole number coefficients.
$2 \mathrm{PbS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{PbO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$

REDOX Balancing Using Ox. No. Method

0	$-1 \mathrm{e}^{-}$
$\mathrm{Ag}_{(\mathrm{s})}+\mathrm{CN}^{-}{ }_{(\mathrm{aq})}+\mathrm{O}_{2(\mathrm{~g})}$	+1
0	$\mathrm{Ag}(\mathrm{CN})_{2^{-}(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
0	$+2 \mathrm{e}^{-}$

To balance electrons we must put a 4 in front of the $\mathbf{A g}$, since each oxygen looses two electrons, and they come two at a time! That requires us to put a 4 in front of the silver complex, yielding 8 cyanide ions.

$$
4 \mathrm{Ag}_{(\mathrm{s})}+8 \mathrm{CN}^{-}{ }_{(\mathrm{aq})}+\mathrm{O}_{2(\mathrm{~g})} \backsim 4 \mathrm{Ag}(\mathrm{CN})_{2}^{-}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

Add $4 \mathbf{O H}^{-}$to balance charge. Since there hydrogen is absent on the reactant side, add $2 \mathbf{H}_{2} \mathrm{O}$ to balance the hydrogen and oxygen.
$4 \mathrm{Ag}_{(\mathrm{s})}+8 \mathrm{CN}^{-(\mathrm{aq})}+\mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow 4 \mathrm{Ag}(\mathrm{CN})_{2(\mathrm{aq})}^{-}+4 \mathrm{OH}^{-}{ }_{(\mathrm{aq})}^{-}$

Combining elements to form an ionic

Decomposing a compound to its Figure 4.15 elements

Fig. 4.17

Figure 4.19

The activity series of the metals
can displace H_{2} from water

can displace H_{2}

from steam
can displace H_{2}
from acid
cannot displace H_{2}
from any source

Metals Displace Hydrogen from Water

Metals that will displace hydrogen from cold water:

$$
\begin{aligned}
& 2 \mathrm{Cs}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Ba}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \\
& 2 \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{CsOH}_{(\mathrm{aq})} \\
& \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Ba}(\mathrm{OH})_{2(\mathrm{aq})} \\
& \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{NaOH}_{(\mathrm{aq})}
\end{aligned}
$$

Metals that will displace hydrogen from steam:

$$
\begin{gathered}
\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
2 \mathrm{Cr}_{(\mathrm{s})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
\mathrm{Hn}_{2(\mathrm{~g})}+\mathrm{Mg}(\mathrm{OH})_{2(\mathrm{~s})} \\
3 \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{Cr}(\mathrm{OH})_{3(\mathrm{~s})} \\
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
\end{gathered}
$$

Metals Displace Hydrogen from Acids

Reactions of metals above hydrogen in the activity series

$$
\begin{aligned}
& \mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \\
& \mathrm{Zn}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \\
& 2 \mathrm{Al}_{(\mathrm{s})}+6 \mathrm{HCl}_{(\mathrm{aq})} \\
& \mathrm{Cd}_{(\mathrm{s})}+2 \mathrm{HBr}_{(\mathrm{aq})} \\
& \mathrm{Mn}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \\
& \mathrm{ZnSO}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \\
& 2 \mathrm{AlCl}_{3(\mathrm{aq})}+3 \mathrm{H}_{2(\mathrm{~g})} \\
& \mathrm{CdBr}_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
\end{aligned}
$$

Reactions of metals below hydrogen in the activity series

$$
\begin{aligned}
& \mathrm{Cu}_{(\mathrm{s})}+\mathrm{HCl}_{(\mathrm{aq})} \\
& \mathrm{Au}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})} \longrightarrow \text { No Reaction! }
\end{aligned}
$$

Three Views of Copper Displacing Silver Ions from Solution

Fig. 4.19

Single-Displacement Reactions Metals Replace Metal Ions from Solution

Many Chemical Reactions Are in a State of Dynamic Equilibrium
Solid-gas equilibrium processes

$$
\mathrm{CaCO}_{3(\mathrm{~s})} \xrightarrow[\Delta]{\Perp} \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

Solution Equilibrium processes involving weak acids and bases

[^0]: balance unchanged polyatomic ions

