### Chapter 4: The Major Classes of Chemical Reactions

- 4.1 The Role of Water as a Solvent
- 4.2 Writing Equations for Aqueous Ionic Reactions
- 4.3 Precipitation Reactions
- 4.4 Acid-Base Reactions
- 4.5 Oxidation-Reduction (Redox) Reactions
- 4.6 Elemental Substances in Redox Reactions
- 4.7 Reversible Reactions: An Introduction to Chemical Equilibrium

### **Ionic Compounds are Strong Electrolytes**

- Electrolyte
  - A substance that conducts a current when dissolved in water.
- Strong Electrolytes
  - Soluble ionic compound dissociate completely
  - may conduct a large current
  - Animation

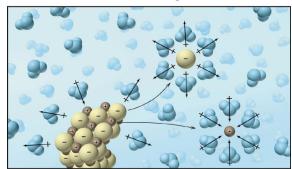
## Role of Water as a Solvent

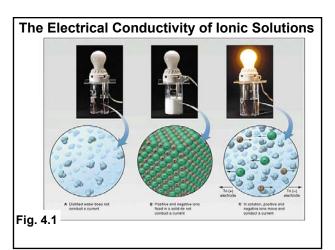
- Why do *some* aqueous solutions conduct electricity and others do not?
- Dissociation of Ionic Compounds
  - Ionic compounds <u>dissociate into ions</u> when dissolved in water

$$NaCl_{(s)} + H_2O_{(l)}$$
  $Na^+_{(aq)} + Cl^-_{(aq)}$ 

- Resulting solution is called an electrolyte
  - Electrolytes conduct electricity.....Why?

# The Dissolution of an Ionic Compound





Fig. 4.3

# Electron Distribution in Molecules of H<sub>2</sub> and H<sub>2</sub>O B S Fig. 4.2

### Soluble vs. Insoluble Ionic Compounds

What determines the solubility of an Ionic Compound?

- Solubility of NaCl in water at  $20^{\circ}$ C = 365 g/L
- Solubility of MgCl<sub>2</sub> in water at 20°C = 542.5 g/L
- Solubility of AlCl<sub>3</sub> in water at 20°C = 699 g/L
- Solubility of PbCl<sub>2</sub> in water at  $20^{\circ}$ C = 9.9 g/L
- Solubility of AgCl in water at  $20^{\circ}$ C = 0.009 g/L
- Solubility of CuCl in water at  $20^{\circ}$ C = 0.0062 g/L



# **Nonelectrolytes**

- Their solutions do *not* conduct electricity......Why?
- Only neutral molecules present
- *Most* molecular (covalent) substances produce neutral molecules in solution
  - e.g. Sucrose, glucose, methanol, ethanol....
- Many polar covalent molecules *ionize* in solution
  - E.g. HCl<sub>(g)</sub>, Organic acids: e.g. CH<sub>3</sub>COOH

### **Solubility of Covalent Compounds in Water**

### Covalent compounds that are soluble in water

- Have polar hydroxyl group: -OH
- Forms strong electrostatic interactions with water

### Examples

- table sugar, sucrose:  $C_{12}H_{22}O_{11}$
- Ethanol: CH<sub>3</sub>CH<sub>2</sub>-OH
- Ethylene glycol (antifreeze):  $C_2H_6O_2$
- Methanol: CH<sub>3</sub>-OH

### **Solubility of Covalent Compounds in Water**

### Covalent compounds that are insoluble in water

- Do not contain a polar center
- Have little or no interactions with water molecules

### Examples

· Hydrocarbons in gasoline and oil

Octane = 
$$C_8H_{18}$$
  
Benzene =  $C_6H_6$ 

Oil spills: oil will not mix with the water and forms a layer on the surface!

# **Equations for the Dissociation of Ionic Compounds**

- Knowledge of the common polyatomic ions is a must:
  - ✓e.g. nitrate, sulfate, phosphate, acetate, carbonate, hydroxide, Ammonium
- Rusty?
  - ✓ Review ionic compounds (Chapter 2)

Write the equation for the dissociation of the following compounds in water

- Aluminum Chloride, AlCl<sub>3</sub>
- Ammonium Sulfate, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>
- Ammonium Hydroxide, NH<sub>4</sub>OH

# Determining Moles of Ions in Aqueous Solutions of Ionic Compounds

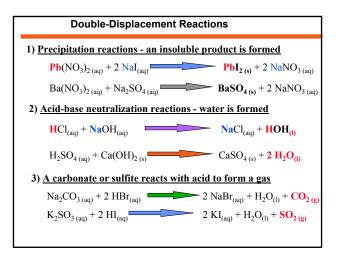
**Problem:** How many moles of each ion are in each of the following:

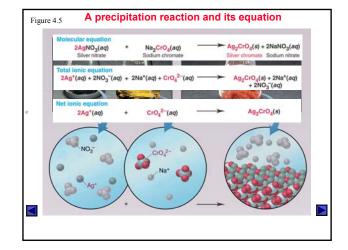
a) 4.0 moles of sodium carbonate dissolved in water

$$Na_2CO_{3 (s)}$$
  $Na_{(aq)}^+ + CO_{3^{-2}(aq)}^-$ 

b) 81.1 g of Iron (III) Chloride dissolved in water

FeCl<sub>3 (s)</sub> 
$$Fe^{+3}_{(aq)} + 3 Cl^{-}_{(aq)}$$
 (FeCl<sub>3</sub> = 162.2 g/mol)

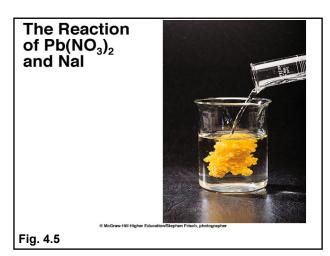

## Metathesis Reactions


(Double displacement or double replacement reactions)

$$\mathbf{AB}$$
 (aq) +  $\mathbf{CD}$  (aq)  $\Longrightarrow$   $\mathbf{CB}$  +  $\mathbf{AD}$ 

### Only occur if one of the following form

- Precipitate (ppt)
- -Gas
- Weak electrolyte (e.g. acid-base reactions to form H<sub>2</sub>O)






# Reactions between Aqueous Ionic Compounds

• Predict what will happen if the following solutions are mixed:

$$Pb(NO_3)_{(aq)} + NaI_{(aq)} \longrightarrow$$



## **Precipitation Reactions: A Solid Product is Formed**

$$Pb(NO_3)_{(aq)} + NaI_{(aq)} \longrightarrow Pb^{+2}_{(aq)} + 2 NO_3^{-}_{(aq)} + Na^{+}_{(aq)} + I^{-}_{(aq)}$$

Vs

$$Pb(NO_3)_{2 \text{ (aq)}} + 2 \text{ NaI}_{\text{(aq)}}$$
 PbI<sub>2 (s)</sub> + 2 NaNO<sub>3 (aq)</sub>

• Why does a precipitate of **PbI<sub>2</sub>** form?

### Precipitation Reactions: Will a Precipitate Form?

$$KCl_{(aq)} + NH_4NO_{3(aq)} = K^+_{(aq)} + Cl^-_{(aq)} + NH_4^+_{(aq)} + NO_{3(aq)}$$

- Will a ppt. Form??
  - -Solubility table/rules are needed
  - -See Table 1, Chapter 4

### Table 4.1 Solubility Rules For Ionic Compounds in Water

### Soluble Ionic Compounds

- 1. All common compounds of Group 1A(1) ions (Li\*, Na\*, K\*, etc.) and ammonium ion (NH $_4$ \*) are soluble.
- 2. All common nitrates (NO $_3$ ), acetates (CH $_3$ COO or C $_2$ H $_3$ O $_2$ ) and most perchlorates (ClO $_4$ ) are soluble.
- 3. All common chlorides (CI), bromides (Br) and iodides (I) are soluble, except those of Ag $^+$ , Pb $^{2+}$ , Cu $^+$ , and Hg $_2^{2+}$ .

### Insoluble Ionic Compounds

- 1. All common metal hydroxides are insoluble, except those of Group 1A(1) and the larger members of Group 2A(2)(beginning with Ca<sup>2+</sup>).
- 2. All common carbonates (CO<sub>3</sub><sup>2-</sup>) and phosphates (PO<sub>4</sub><sup>3-</sup>) are insoluble, except those of Group 1A(1) and NH<sub>4</sub><sup>+</sup>.
- 3. All common sulfides are insoluble except those of Group 1A(1), Group 2A(2) and  $\rm NH_4^+.$

# Predicting Whether a Precipitation Reaction Occurs & Writing Equations

**Molecular Equation** 

$$Ca(NO_3)_{2 (aq)} + Na_2SO_{4 (aq)}$$
 CaSO<sub>4 (s)</sub> + NaNO<sub>3 (aq)</sub>

**Total Ionic Equation** 

$$Ca^{2+}_{(aq)} + 2 NO_{3(aq)}^{-} + 2 Na^{+}_{(aq)} + SO_{4(aq)}^{-2} CaSO_{4(s)} + 2 Na^{+}_{(aq)} + 2 NO_{3(aq)}^{-}$$

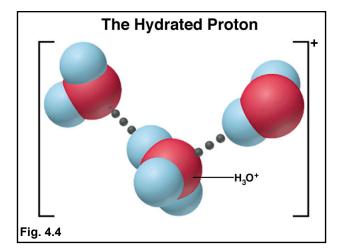
**Net Ionic Equation** 

$$Ca^{2+}_{(aq)} + SO^{-2}_{(aq)}$$
 CaSO<sub>4(s)</sub>

- Spectator Ions are Na<sup>+</sup> and NO<sub>3</sub><sup>-</sup>
- Balance by Charge and Mass!!

### Precipitation Reactions: Will a Precipitate Form?

a) 
$$Na_2SO_{4 (aq)} + Ba(NO_3)_{2 (aq)}$$

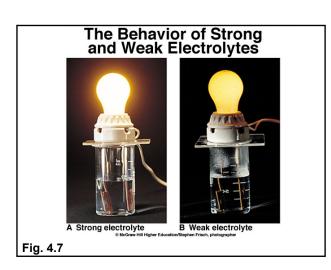

b) 
$$CaCl_{2(aq)} + Na_2CO_{3(aq)}$$

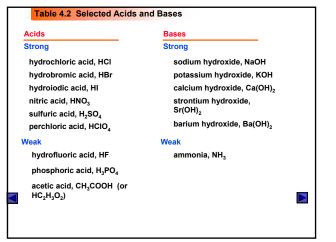
# Acids

### Acids

-substances that produces H<sup>+</sup> (H<sub>3</sub>O<sup>+</sup>) ions when dissolved in water.

$$HI_{(g)} + H_2O_{(L)}$$
  $H_3O^+_{(aq)} + I^-_{(aq)}$ 
 $HI_{(g)}$   $H^+_{(aq)} + I^-_{(aq)}$ 





# Bases -substances that produces OH ions when dissolved in water. $Na^{+}_{(aq)} + OH^{1-}_{(aq)}$ NaOH (s) $NH_{3(g)} + H_2O_{(L)}$ $NH_{4(aq)}^+ + OH^{1-}_{(aq)}$

Bases

# Strong vs. Weak Acids and Bases

- Acids and bases
  - ➤ May be strong or weak electrolytes
  - ➤ Strength determined by the degree of ionization in water
  - >Strong acids and bases *ionize* completely, and are strong electrolytes.
  - >. Weak acids and bases *ionize* weakly and are weak electrolytes





# Strong Acids and the Molarity of H<sup>+</sup> lons in **Aqueous Solutions of Acids**

**Problem:** What is the molarity of the sulfate and hydronium ions in a solution prepared by dissolving 155g of sulfuric acid into sufficient water to produce 2.30 Liters of acid solution?

$$H_2SO_{4(I)} + 2 H_2O_{(I)}$$
 2  $H_3O^+_{(aq)} + SO_4^{-2}_{(aq)}$ 

0.597 Molar in H<sup>+</sup> 0.687 Molar in SO<sub>4</sub>-2

# Metathesis Reactions

(Double displacement or double replacement reactions)

$$\mathbf{AB}$$
 (aq) +  $\mathbf{CD}$  (aq)  $\Longrightarrow$   $\mathbf{CB}$  +  $\mathbf{AD}$ 

### Only occur if one of the following form

- Precipitate (ppt)
- -Gas
- Weak electrolyte (e.g. acid-base reactions to form H<sub>2</sub>O)

### Acid - Base Reactions: Neutralization Rxns.

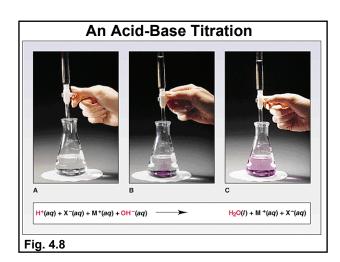
The generalized reaction between an Acid and a Base is:

$$HX_{(aq)} + MOH_{(aq)}$$
  $MX_{(aq)} + H_2O_{(L)}$ 

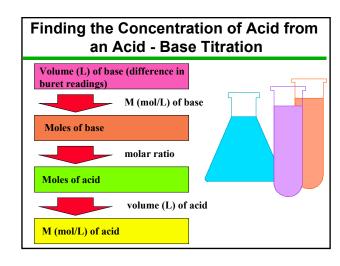
# Writing Balanced Equations for Neutralization Reactions

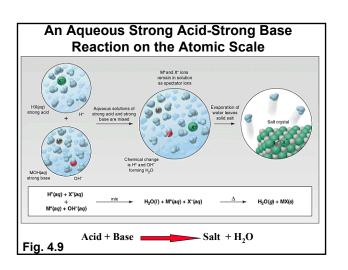
**Problem:** Write balanced molecular and net ionic equations for the following chemical reactions:

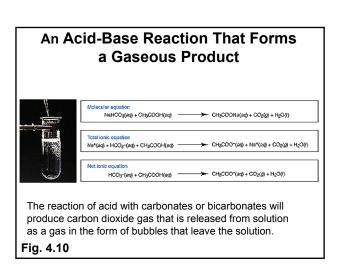
- a) Calcium hydroxide(aq) and hydrochloric acid(aq)
- b) Lithium hydroxide(aq) and sulfuric acid(aq)


### Finding the Concentration of Base from an Acid - Base Titration (I)

Problem: A titration is performed between sodium hydroxide and potassium hydrogenphthalate (KHP) to standardize the base solution, by placing 50.00 mg of solid potassium hydrogenphthalate in a flask with a few drops of an indicator. A buret is filled with the base, and the initial buret reading is 0.55 ml; at the end of the titration the buret reading is 33.87 ml. What is the concentration of the base? Molar mass of KHP is 204.2 g/mole


$$HKC_8H_4O_{4(aq)} + OH_{(aq)} - KC_8H_4O_{4(aq)} + H_2O_{(aq)}$$


Answer: molarity of base = 0.07349 M


# Potassium Hydrogenphthalate KHC<sub>8</sub>H<sub>4</sub>O<sub>4</sub>



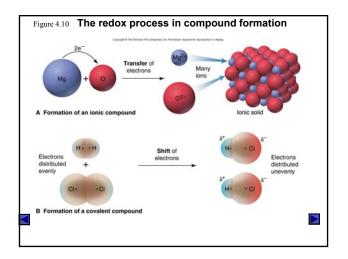
# Finding the Concentration of Base from an Acid - Base Titration (II) moles KHP = $\frac{50.00 \text{ mg KHP}}{204.2 \text{ g KHP}} \times \frac{1.00 \text{ g}}{1000 \text{ mg}} = 0.00024486 \text{ mol KHP}$ Volume of base = Final buret reading - Initial buret reading = 33.87 ml - 0.55 ml = 33.32 ml of base one mole of acid = one mole of base; therefore 0.00024486 moles of acid will yield 0.00024486 moles of base in a volume of 33.32 ml. molarity of base = $\frac{0.00024486 \text{ moles}}{0.03332 \text{ L}} = 0.07348679 \text{ moles per liter}$ molarity of base = 0.07349 M







### **Oxidation-Reduction Reactions**


- "Redox Reactions"
  - Involve the transfer of one or more electrons from one substance to another
  - Examples
    - Formation of compounds from its elements and vice versa
    - · Combustion reactions
    - · Reactions that produce electricity in batteries
    - Cellular Respiration (energy production in cells)

### Objectives

- Determine if a reaction is a redox reaction and identify the substances that are oxidized and reduced
- To balance simple redox reactions

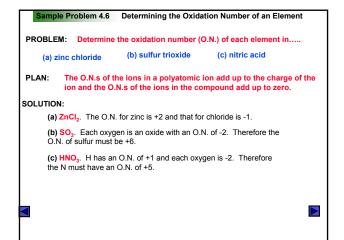
# **Oxidation and Reduction**

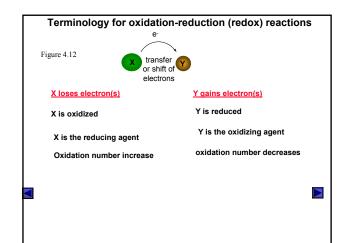
- Oxidation
  - -Loss of Electrons
- Reduction
  - -Gain of Electrons
- L.E.O. the Lion said G.E.R.



### **Oxidation Numbers**

- Rules for Assigning Oxidation Numbers (Table 4.3, page 148, 3ed)


  Examples
  - Ca, Ca<sup>2+</sup>, CaCl<sub>2</sub>, CuSO<sub>4</sub>
  - H<sub>2</sub>, H<sub>2</sub>O, HNO<sub>3</sub>, NO<sub>3</sub><sup>1-</sup>, H<sub>2</sub>SO<sub>4</sub>, H<sub>2</sub>SO<sub>3</sub>, HCO<sub>3</sub><sup>1-</sup>
  - Na<sub>2</sub>O<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>, ClO<sub>2</sub>, FCl, MgH<sub>2</sub>, BH<sub>3</sub>
- Oxidation Number: Charge an atom would have if electrons in each of its bonds belonged entirely to the more electronegative element


# General Rules for Assigning an Oxidation Number

- 1. For an atom in its elemental form (Na, O<sub>2</sub> Cl<sub>2</sub>, etc.) the Ox. No. = 0
- 2. For monotomic ions: Ox. No. = ion charge
- 3. The sum of Ox. No. values for the atoms in a compound equals zero.
- **4. Polyatomic ions**: The sum of the Ox. No. values for the atoms in a equals the ion charge.

# Specific Rules for Assigning an Oxidation Number

- 1. Group 1A = +1 in all compounds
- 2. Group 2A = +2 in all compounds
- 3. **Hydrogen** = +1 in combination with nonmetals = -1 in combination with metals or boron
- 4. Fluorine = -1 in all compounds
- 5. Oxygen = -1 in peroxides  $(O_2^{2-})$ 
  - = -2 in all other compounds (except with F)
- **6. Group 7A** = -1 in combination with metals, nonmetals (except O), and other halogens lower in the group





# **Oxidizing Agents vs Reducing Agents**

- Oxidizing Agent
  - A substance that causes oxidation
    - It is reduced in the process....Why?
- Reducing Agent
  - A substance that causes reduction
    - It is oxidized in the process....Why?
- Redox Reactions
  - Reaction in which oxidation numbers change

# Use of Oxidation Numbers to Identify Oxidation and Reduction

- Oxidation occurs if the oxidation number increases.......Why?
- Reduction occurs if the oxidation number decreases......Why?
- Practice.....

### Use of Oxidation Numbers to Identify Oxidation and Reduction

 Identify the substances that are oxidized and reduced in the following examples

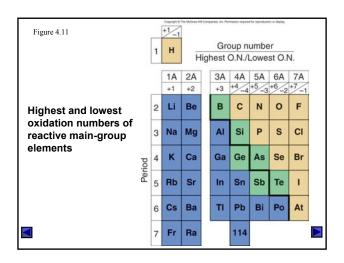
$$Zn_{(s)} + 2 HCl_{(aq)} \rightarrow ZnCl_{2 (aq)} + H_{2 (g)}$$

$$S_{8(s)} + 12 O_{2(g)} \rightarrow 8 SO_{3(g)}$$

$$NiO_{(s)} + CO_{(g)} \rightarrow Ni_{(s)} + CO_{2(g)}$$

Identify the oxidizing and reducing agents in each reaction

### Use of Oxidation Numbers to Identify Oxidation and Reduction


- Identify the substances that are oxidized and reduced in the following examples
- $2 \text{ Ag NO}_{3 \text{ (aq)}} + \text{ Cu}_{(s)} \rightarrow \text{ Cu(NO}_{3})_{2(aq)} + 2 \text{ Ag}_{(s)}$
- Identify the oxidizing and reducing agents in each reaction

# Use of Oxidation Numbers to Identify Oxidation and Reduction

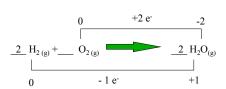
 Identify the substances that are oxidized and reduced in the following examples

$$N_{2(g)}$$
 +  $2 O_{2(g)} \rightarrow 2 NO_{2(g)}$ 

Identify the oxidizing and reducing agents in each reaction

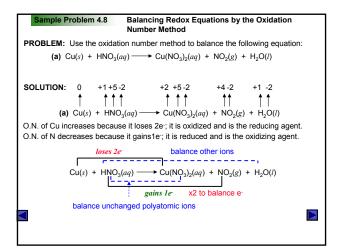


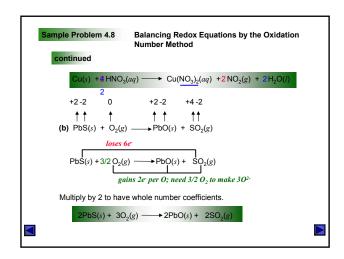
| Period | Wall Cloup Elements |     |             |                |                     |                |                |             |  |  |
|--------|---------------------|-----|-------------|----------------|---------------------|----------------|----------------|-------------|--|--|
| 1      | +1 -1               | IIA | ША          | IVA            | VA                  | VIA            | VIIA           | He          |  |  |
| 2      | Li                  | Be  | В           | C              | N                   | 0              | F              | Ne          |  |  |
| 2      | +1                  | +2  | +3          | +4,+2<br>-1,-4 | all from<br>+5 → -3 | -1,-2          | -1             |             |  |  |
|        | Na                  | Mg  | Al          | Si             | P                   | S              | -1 Cl          | Ar          |  |  |
| 3      | +1                  | +2  | +3          | +4,-4          | +5,+3<br>-3         | +6,+4<br>+2,-2 | +7,+5<br>+3,+1 |             |  |  |
|        | K                   | Ca  | Ga          | Ge             | As                  | Se             | -1 Br          | Kr          |  |  |
| 4      | +1                  | +2  | +3, +2      | +4,+2<br>-4    | +5,+3<br>-3         | +6,+4<br>-2    | +7,+5<br>+3,+1 | +2          |  |  |
| 5      | Rb                  | Sr  | In          | Sn             | Sb                  | Te             | -1 I           | Xe          |  |  |
|        | +1                  | +2  | +3,+2<br>+1 | +4,+2,<br>-4   | +5,+3<br>-3         | +6,+4<br>-2    | +7,+5<br>+3,+1 | +6,+4<br>+2 |  |  |
| 6      | Cs                  | Ba  | Tl          | Pb             | Bi                  | Po             | -1 At          | Rn          |  |  |
|        | +1                  | +2  | +3,+1       | +4,+2          | +3                  | +6,+4<br>+2,-2 | +7,+5<br>+3,+1 | +2          |  |  |

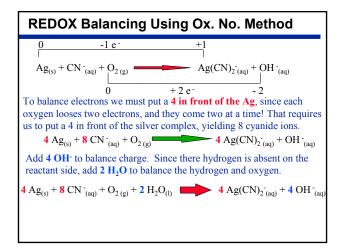

| Transition Metals Possible Oxidation States |             |               |                |                   |                |             |       |       |       |  |  |
|---------------------------------------------|-------------|---------------|----------------|-------------------|----------------|-------------|-------|-------|-------|--|--|
| _IIIR                                       | IVB         | VB            | VIB            | VIII              |                | -VIIIB      |       | IB    | IIB   |  |  |
| Sc                                          | Ti          | V             |                | +2Mn              |                | Co          | Ni    | Cu    | Zn    |  |  |
| +3                                          | +4,+3<br>+2 | +5,+4<br>+3+2 | +6,+3<br>+2    | +7,+6<br>+4,+3    | +3,+2          | +3,+2       | +2    | +2,+1 | +2    |  |  |
| Y                                           | Zr          | Nb            | Mo             | Tc                | Ru             | Rh          | Pd    | Ag    | Cd    |  |  |
| +3                                          | +4,+3       | +5,+4<br>+2   | +6,+5<br>+4,+3 | +7,+5<br>+4       | +8,+5<br>+4,+3 | +4,+3       | +4,+2 | +1    | +2    |  |  |
| La                                          |             |               |                |                   |                |             |       |       |       |  |  |
| +3                                          | +4,+3       | +5,+4<br>+3   | +6,+5<br>+4    | Re<br>+7,+5<br>+4 | +8,+6<br>+4,+3 | +4,+3<br>+1 | +4,+2 | +3,+1 | +2,+1 |  |  |
|                                             |             |               |                |                   |                |             |       |       |       |  |  |
|                                             |             |               |                |                   |                |             |       |       |       |  |  |

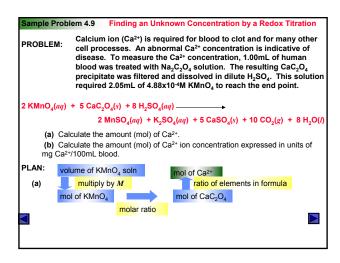
# Balancing REDOX Equations: The Oxidation Number Method

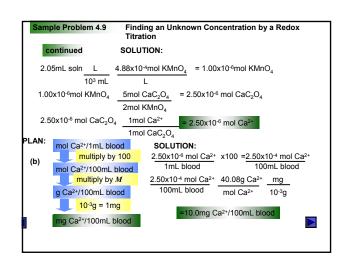
- Step 1) Assign oxidation numbers to all elements in the equation.
- Step 2) From the changes in oxidation numbers, identify the oxidized and reduced species.
- Step 3) Compute the number of electrons lost in the oxidation and gained in the reduction from the oxidation number changes.


  Draw tie-lines between these atoms to show electron changes.
- Step 4) Multiply one or both of these numbers by appropriate factors to make the electrons lost equal the electrons gained, and use the factors as balancing coefficients.
- Step 5) Complete the balancing by inspection, adding states of matter.


# **REDOX Balancing Using Ox. No. Method**





electrons lost must = electrons gained;


Therefore, multiply the hydrogen reaction by  $\tilde{\mathbf{2}}$  to balance the equation

