

Chapter 2

The Components of Matter

Chapter 2: The Components of Matter

2.1 Elements, Compounds, and Mixtures: An Atomic Overview
2.2 The Observations That Led to an Atomic View of Matter
2.3 Dalton's Atomic Theory
2.4 The Observations That Led to the Nuclear AtomModel
2.5 The Atomic Theory Today
2.6 Elements: A First Look at the Periodic Table
2.7 Compounds: Introduction to Bonding
2.8 Compounds: Formulas, Names, and Masses
2.9 Mixtures: Classification and Separation

Definitions for Components of Matter

Element - the simplest type of substance with unique physical and chemical properties. An element consists of only one type of atom. It cannot be broken down into any simpler substances by physical or chemical means.

Definitions for Components of Matter
Table 2.1 Some Properties of Sodium, Chlorine, and Sodium Chloride

Compound - a substance composed of two or more elements which are chemically combined.

Mixture - a group of two or more elements and/or compounds that are physically intermingled.

Law of Conservation of Mass:

The total mass of substances does not change during a chemical reaction.

\square

Law of Multiple Proportions

If elements A and B react to form two compounds, the different masses of B that combine with a fixed mass of A can be expressed as a ratio of small whole numbers:

Example: Nitrogen Oxides I \& II
Nitrogen Oxide I : 46.68\% Nitrogen and 53.32\% Oxygen Nitrogen Oxide II : 30.45\% Nitrogen and 69.55\% Oxygen

Assume that you have 100 g of each compound.
In 100 g of each compound: $\mathrm{g} \mathrm{O}=53.32 \mathrm{~g}$ for oxide $\mathrm{I} \& 69.55 \mathrm{~g}$ for oxide II

$$
\mathrm{g} \mathrm{~N}=46.68 \mathrm{~g} \text { for oxide I \& } 30.45 \mathrm{~g} \text { for oxide II }
$$

$$
\begin{gathered}
\frac{\mathrm{gO}}{\mathrm{gN}}=\frac{53.32}{46.68}=1.142 \quad \frac{\mathrm{gO}}{\mathrm{gN}}=\frac{69.55}{30.45}=2.284 \\
\frac{2.284}{1.142}=2
\end{gathered}
$$

Dalton's Atomic Theory

1. All matter consists of atoms.
2. Atoms of one element cannot be converted into atoms of another element.
3. Atoms of an element are identical in mass (not true!) and other properties and are different from atoms of any other element.
4. Compounds result from the chemical combination of a specific ratio of atoms of different elements.

The Atomic Basis of the Law of Multiple Proportions

Experiments to Determine the Properties of Cathode Rays

The Modern Reassessment of the Atomic Theory

1. All matter is composed of atoms. The atom is the smallest body that retains the unique identity of the element.
2. Atoms of one element cannot be converted into atoms of another element in a chemical reaction. Elements can only be converted into other elements in nuclear reactions.
3. All atoms of an element have the same number of protons and electrons, which determines the chemical behavior of the element. Isotopes of an element differ in the number of neutrons, and thus in mass number. A sample of the element is treated as though its atoms have an average mass.
4. Compounds are formed by the chemical combination of two or more elements in specific ratios.

Properties of the Three Key Subatomic Particles						
Name(Symbol)		arge		ass	Location in the Atom	
	Relativ	e Absolute(C)*	elative(amu)	Absolute(g)		
Proton (${ }^{+}$)	1+	+1.60218×10-19	1.00727	1.67262×10^{-24}	Nucleus	
Neutron (n^{0})	0	0	1.00866	1.67493×10^{-24}	Nucleus	
Electron (e)		-1.60218×10^{-19}	0.00054858	9.10939×10^{-28}	Outside Nucleus	
Table 2.2						
2-19						

Sample Problem 2.2 Determining the Number of Subatomic Particles in the Isotopes of an Element

PROBLEM: Silicon(Si) is essential to the computer industry as a major component of semiconductor chips. It has three naturally occurring isoltopes: ${ }^{28} \mathrm{Si},{ }^{29} \mathrm{Si}$, and ${ }^{30} \mathrm{Si}$. Determine the number of protons, neutrons, and electrons in each silicon isotope.

PLAN: We have to use the atomic number and atomic masses.

SOLUTION: The atomic number of silicon is 14 . Therefore
${ }^{28}$ Si has $14 \mathrm{p}^{+}, 14 \mathrm{e}^{-}$and $14 \mathrm{n}^{0}(28-14)$
${ }^{29}$ Si has $14 \mathrm{p}^{+}, 14 \mathrm{e}^{-}$and $15 \mathrm{n}^{0}(29-14)$
${ }^{30}$ Si has $14 \mathrm{p}^{+}, 14 \mathrm{e}^{-}$and $16 \mathrm{n}^{0}(30-14)$

2-21

Sample Problem 2.3 Calculating the Atomic Mass of an Element

PROBLEM: Silver(Ag: $Z=47$) has 46 known isotopes, but only two occur naturally, ${ }^{107} \mathrm{Ag}$ and ${ }^{109} \mathrm{Ag}$. Given the following mass spectrometric data, calculate the atomic mass of Ag :

Isotope	Mass(amu)	Abundance(\%)
${ }^{107} \mathrm{Ag}$	106.90509	51.84
${ }^{109} \mathrm{Ag}$	108.90476	48.16

PLAN: We have to find the weighted average of the isotopic masses, so we multiply each isotopic mass by its fractional abundance and then sum those isotopic portions.
SOLUTION:
mass (g)
isotc $\begin{gathered}\text { multiply by fractional } \\ \text { abundance of each } \\ \text { isotope }\end{gathered} \quad \begin{aligned} & \text { ato }\end{aligned}$ add isotopic portions mass
mass portion from ${ }^{107} \mathrm{Ag}=$
$106.90509 \mathrm{amu} \times 0.5184=55.42 \mathrm{amu}$
mass portion from ${ }^{109} \mathrm{Ag}=108.90476 \mathrm{amu} \times 0.4816=52.45 \mathrm{amu}$
atomic mass of $\mathrm{Ag}=55.42 \mathrm{amu}+52.45 \mathrm{amu}=107.87 \mathrm{amu}$

Sample Problem 2.4

Predicting the Ion an Element Forms

PROBLEM: What monatomic ions do the following elements form?
(a) lodine $(Z=53)$
(b) Calcium $(Z=20)$
(c) Aluminum $(Z=13)$

PLAN: Use Z to find the element. Find it's relationship to the nearest noble gas. Elements occurring before the noble gas gain electrons and elements following lose electrons.

SOLUTION:lodine is a nonmetal in Group 7A(17). It gains one electron to have the same number of electrons as ${ }_{54} \mathrm{Xe}$.
Ca^{2+} Calcium is a metal in Group $2 \mathrm{~A}(2)$. It loses two electrons to have the same number of electrons as ${ }_{18} \mathrm{Ar}$.
Al^{3+} Aluminum is a metal in Group 3A(13). It loses three electrons to have the same number of electrons as ${ }_{10} \mathrm{Ne}$.

The Relationship Between Ions Formed and the Nearest Noble Gas:

Figure 2.15

Table 2.3	Common Monoatomic lons				Name
Charge	Cations Formula	Name	Charge	Anions Formula	
	H^{+}	hydrogen		H^{-}	hydride
	Li^{+}	lithium		F^{-}	fluoride
+1	Na^{+}	sodium	-1	Cl^{-}	chloride
	K ${ }^{+}$	potassium		Br	bromide
	Cs ${ }^{+}$	cesium		I^{-}	iodide
	Ag^{+}	silver			
	Mg^{2+}	magnesium		O^{2-}	oxide
	Ca^{2+}	calcium			
+2	Sr^{2+}	strontium	-2		
	Ba^{2+}	barium			
	Zn ${ }^{+}$	zinc		Common io	ns are in blue.
	Cd^{2+}	cadmium			
+3	Al^{3+}	aluminum	-3	N^{3-}	nitride \quad
2-31					

Sample Problem 2.6 Determining Formulas of Binary lonic Compounds

PROBLEM: Write empirical formulas for the compounds named in Sample Problem 2.5.

PLAN: Compounds are neutral. We find the smallest number of each ion which will produce a neutral formula. Use subscripts to the right of the element symbol.

SOLUTION:
(a) Mg^{2+} and N^{3-}; three $\mathrm{Mg}^{2+}(6+)$ and two $\mathrm{N}^{3-}(6-) ; \mathrm{Mg}_{3} \mathrm{~N}_{2}$
(b) Cd^{2+} and I^{-}; one $\mathrm{Cd}^{2+}(2+)$ and two $\mathrm{I}^{-}(2-) ; \mathrm{Cdl}_{2}$
(c) Sr^{2+} and F^{-}; one $\mathrm{Sr}^{2+}(2+)$ and two $\mathrm{F}^{-}(2-) ; \mathrm{SrF}_{2}$
(d) Cs^{+}and S^{2-}; two $\mathrm{Cs}^{+}(2+)$ and one $\mathrm{S}^{2-}(2-) ; \mathrm{Cs}_{2} \mathrm{~S}$
-34

Sample Problem 2.7 Determining Names and Formulas of Ionic Compounds of Elements That Form More Than One Ion

PROBLEM: Give the systematic names or the formulas for the names of the following compounds:
(a) tin(II) fluoride
(b) Crl_{3}
(c) ferric oxide
(d) CoS

PLAN: Compounds are neutral. We find the smallest number of each ion which will produce a neutral formula. Use subscripts to the right of the element symbol.

SOLUTION: (a) Tin (II) is Sn^{2+}; fluoride is F^{-}; so the formula is SnF_{2}.
(b) The anion I is iodide $\left(I^{-}\right) ; 31^{-}$means that Cr (chromium) is +3 . Crl_{3} is chromium(III) iodide
(c) Ferric is a common name for Fe^{3+}; oxide is O^{2-}, therefore the formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
(d) Co is cobalt; the anion S is sulfide(2-); the compound is cobalt (II) sulfide.

Some Common Polyatomic Ions

Formula	Name		Formula	Name
	Cations			
$\mathrm{NH}_{4}{ }^{+}$	ammonium	$\mathrm{H}_{3} \mathrm{O}^{+}$	hydronium	

Common Anions

$\mathrm{CH}_{3} \mathrm{COO}^{-}$	acetate	CO_{3}^{-2}	carbonate
CN^{-}	cyanide	CrO_{4}^{-2}	chromate
OH^{-}	hydroxide	$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}$	dichromate
ClO_{3}^{-}	chlorate	O_{2}^{-2}	oxide
NO_{2}^{-}	nitrite	SO_{4}^{-2}	sulfate
NO_{3}^{-}	nitrate	PO_{4}^{-3}	phosphate
MnO_{4}^{-}	permanganate		

Sample Problem 2.8 Determining Names and Formulas of Ionic Compounds Containing Polyatomic Ions

PROBLEM: Give the systematic names or the formula or the formulas for the names of the following compounds:
(a) $\mathrm{Fe}\left(\mathrm{ClO}_{4}\right)_{2}$
(b) sodium sulfite
(c) $\mathrm{Ba}(\mathrm{OH})_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$

PLAN: Note that polyatomic ions have an overall charge so when writing a formula with more than one polyatomic unit, place the ion in a set of parentheses.

SOLUTION: (a) $\mathrm{CIO}_{4}{ }^{-}$is perchlorate; iron must have a $2+$ charge. This is iron(II) perchlorate.
(b) The anion sulfite is $\mathrm{SO}_{3}{ }^{2-}$ therefore you need 2 sodiums per sulfite. The formula is $\mathrm{Na}_{2} \mathrm{SO}_{3}$.
(c) Hydroxide is OH^{-}and barium is a $2+$ ion. When water is included in the formula, we use the term "hydrate" and a prefix which indicates the number of waters. So it is barium hydroxide octahydrate.

Sample Problem 2.9 Recognizing Incorrect Names and Fromulas of Ionic Compounds

PROBLEM: Something is wrong with the second part of each statement. Provide the correct name or formula.
(a) $\mathrm{Ba}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$ is called barium diacetate.
(b) Sodium sulfide has the formula $(\mathrm{Na})_{2} \mathrm{SO}_{3}$.
(c) Iron(II) sulfate has the formula $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$.
(d) Cesium carbonate has the formula $\mathrm{Cs}_{2}\left(\mathrm{CO}_{3}\right)$.

SOLUTION: (a) Barium is always a +2 ion and acetate is -1 . The "di-" is unnecessary.
(b) An ion of a single element does not need parentheses. Sulfide is S^{2-}, not $\mathrm{SO}_{3}{ }^{2-}$. The correct formula is $\mathrm{Na}_{2} \mathrm{~S}$.
(c) Since sulfate has a 2 - charge, only $1 \mathrm{Fe}^{2+}$ is needed. The formula should be FeSO_{4}.
(d) The parentheses are unnecessary. The correct formula is $\mathrm{Cs}_{2} \mathrm{CO}_{3}$.

Sample Problem 2.11 Determining Names and Formulas of Binary Covalent Compounds

PROBLEM: (a) What is the formula of carbon disulfide?
(b) What is the name of PCl_{5} ?
(c) Give the name and formula of the compound whose molecules each consist of two N atoms and four O atoms.

SOLUTION: (a) Carbon is C , sulfide is sulfur S and di-means $2-\mathrm{CS}_{2}$.
(b) P is phosphorous, Cl is chloride, the prefix for 5 is penta-. Phosphorous pentachloride.
(c) N is nitrogen and is in a lower group number than O (oxygen). Therefore the formula is $\mathrm{N}_{2} \mathrm{O}_{4}$-dinitrogen tetraoxide.

2-40

Sample Problem 2.12 Recognizing Incorrect Names and Formulas of Binary Covalent Compounds

PROBLEM: Explain what is wrong with the name of formula in the second part of each statement and correct it:
(a) SF_{4} is monosulfur pentafluoride.
(b) Dichlorine heptaoxide is $\mathrm{Cl}_{2} \mathrm{O}_{6}$.
(c) $\mathrm{N}_{2} \mathrm{O}_{3}$ is dinitrotrioxide.

SOLUTION: (a) The prefix mono- is not needed for one atom; the prefix for four is tetra-. So the name is sulfur tetrafluoride.
(b) Hepta- means 7; the formula should be $\mathrm{Cl}_{2} \mathrm{O}_{7}$.
(c) The first element is given its elemental name so this is dinitrogen trioxide.

Sample Problem 2.13 Calculating the Molecular Mass of a Compound

PROBLEM: Using the data in the periodic table, calculate the molecular (or formula) mass of the following compounds:
(a) Tetraphosphorous trisulfide
(b) Ammonium nitrate

PLAN: Write the formula and then multiply the number of atoms(in the subscript) by the respective atomic masses. Add the masses for the compound.

SOLUTION:

Naming Acids

1) Binary acids solutions form when certain gaseous compounds dissolve in water.
For example, when gaseous hydrogen chloride (HCl) dissolves in water, it forms a solution called hydrochloric acid. Prefix hydro-+ anion nonmetal root + suffix -ic + the word acid - hydrochloric acid
2) Oxoacid names are similar to those of the oxoanions, except for two suffix changes:
Anion "-ate" suffix becomes an "-ic" suffix in the acid. Anion "-ite" suffix becomes an "-ous" suffix in the acid.
The oxoanion prefixes "hypo-" and "per-" are retained. Thus, BrO_{4} is perbromate, and HBrO_{4} is perbromic acid; $\mathrm{IO}_{2}{ }^{-}$is iodite, and HIO_{2} is iodous acid.

Chemical Formulas

Empirical Formula - Shows the relative number of atoms of each element in the compound. It is the simplest formula, and is derived from masses of the elements.

Molecular Formula - Shows the actual number of atoms of each element in the molecule of the compound.

Structural Formula - Shows the actual number of atoms, and the bonds between them, that is, the arrangement of atoms in the molecule.

Mixtures

Heterogeneous mixtures: has one or more visible boundaries between the components.

Homogeneous mixtures: has no visible boundaries because the components are mixed as individual atoms, ions, and molecules.

Solutions: A homogeneous mixture is also called a solution. Solutions in water are called aqueous solutions, and are very important in chemistry. Although we normally think of solutions as liquids, they can exist in all three physical states.

Tools of the Laboratory

Basic Separation Techniques

Filtration : Separates components of a mixture based upon differences in particle size. Normally separating a precipitate from a solution, or particles from an air stream.

Crystallization : Separation is based upon differences in solubility of components in a mixture.

Distillation : separation is based upon differences in volatility.
Extraction : Separation is based upon differences in solubility in different solvents (major material).

Chromatography : Separation is based upon differences in solubility in a solvent versus a stationary phase.

