Team No. \qquad Section \qquad

What is an atom?
What is the structure of an atom?

The Model-the structure of an atom

(Reference: sections 2.4-2.6 in Silberberg $5^{\text {th }}$ ed.)
The subatomic particles that chemists are typically concerned with are the electron, the proton, and (to a lesser extent) the neutron. The following table shows what distinguishes one subatomic particle from another:

Particle	Charge	Mass (amu*)	Symbol used in the diagrams below
electron	-1	0.00055	e
proton	+1	1.00728	p
neutron	0	1.00867	n

* The atomic mass unit (amu) is equivalent to $1.6606 \times 10^{-24} \mathrm{~g}$.

Suppose we had a VERY powerful microscope/camera that allowed us to take the following "snapshots" of atoms. (A snapshot is involved because the particles within the nucleus of an atom (don't confuse it with a nucleus of a cell!) are in constant motion as are the electrons in space outside of the nucleus. To see what's in the nucleus, we have to zoom in real close.

Nitrogen-15

a Nitride ion (an ion of nitrogen)

a Fluoride ion (an ion of fluorine)

The following three diagrams are carbon atoms using the following symbols (not drawn to scale)
$O=$ proton (positive charge) \quad = electron (negative charge) $\quad O=$ neutron (no charge)

$\mathbf{X}=$ chemical symbol of the element
$\mathbf{Z}=$ "atomic number"
$\mathbf{A}=$ "mass number"
${ }_{6}^{12} \mathrm{C},{ }_{6}^{13} \mathrm{C}$, and ${ }_{6}^{14} \mathrm{C}$ are notations that represent isotopes of carbon.
${ }_{1}^{1} \mathrm{H},{ }_{1}^{2} \mathrm{H}$ and ${ }_{1}^{3} \mathrm{H}$ are notations that represent isotopes of hydrogen.
The part of the atom where the protons and neutrons are is called the nucleus.

Key Questions

1 a.) How many protons are found in each of the following? ${ }_{7}^{14} \mathrm{~N}$ \qquad ${ }_{7}^{15} \mathrm{~N}$ \qquad
b.) How many neutrons are found in each of the following? ${ }_{7}^{14} \mathrm{~N}$ \qquad ${ }_{7}^{15} \mathrm{~N}$ \qquad
c.) How many electrons are found in each of the following? ${ }_{7}^{14} \mathrm{~N}$ \qquad ${ }_{7}^{15} \mathrm{~N}$ \qquad

2 a.) Based on the Model, what do all atoms (neutral or charged) of Nitrogen have in common?
b.) Based on the Model, what do all atoms (neutral or charged) of Hydrogen have in common?
3. Look at the Periodic Table on page 7. What is the significance of the number (called the atomic number and represented by the letter Z) that appears above the symbol of each element on the periodic table. (e.g., "H" for Hydrogen and "N" for Nitrogen)?
4. What do all Arsenic (As) atoms have in common?
5. The number of what subatomic particle determines the identity of an atom?
6. The left-hand superscript in the symbol for an atom (e.g., the 2 in ${ }_{1}^{2} \mathrm{H}$) is called the mass number and is represented by the letter A. What subatomic particle(s) determine(s) the value of \mathbf{A} ?
7. Hydrogen-1, Hydrogen-2 and Hydrogen-3 are isotopes of the element Hydrogen. Nitrogen-14 and Nitrogen-15 are isotopes of the element Nitrogen. What subatomic particle distinguishes isotopes of the same element from each other?
8. If present, what does the right-hand superscript in the symbol for an atom (e.g., the " $2+$ " in $\left.{ }_{12}^{24} \mathrm{Mg}^{2+}\right)$ tell the reader?

9 a.) When an atom becomes an ion (e.g., when ${ }_{7}^{14} \mathrm{~N}$ becomes ${ }_{7}^{14} \mathrm{~N}^{3-}$), which subatomic particle undergoes a change in number in the atom?
b.) Is that particle gained or lost? Explain.
c. How is the magnitude of the charge on an ion determined?

Exercises

10. Complete the table below.

Isotopic Symbol	\boldsymbol{Z}	\boldsymbol{A}	\# of electrons	\# of protons	\# of neutrons
12 6					
56 ${ }_{26} \mathrm{Fe}^{3+}$					
32 ${ }_{16} \mathrm{~S}^{2-}$	42	98	42		
			48	50	70
	15		18		16

11. Write the isotopic notation (e.g. ${ }_{4}^{9} \mathrm{Be}$) for each representation of the following atoms or ions.
a.) Isotopic notation:
b.) Isotopic notation:
c.) Isotopic notation:

12. Draw the atomic representations similar to those in the previous question for each of the following atoms or ions.
a.) $\quad{ }_{82}^{207} \mathrm{~Pb}$
b.) ${ }_{4}^{9} \mathrm{Be}$
c.) $\quad{ }_{33}^{75} \mathrm{As}^{5+}$
13. Rutherford's "gold foil experiment" involves passing a beam of α-particles (i.e. helium nuclei, He^{2+}) through a very thin sheet of gold. Most of the α-particles pass through the gold foil (a very dense metal) with little or no deflection. However, a few of the α-particles are observed to be deflected significantlysome were even deflected back to the source! a.) Explain why most of the α-particles pass directly through the gold foil with little to no deflection.

b.) Explain why only a very small fraction of the α-particles have large deflection angles.
c.) Explain why some of the α-particles are deflected back to the source. What does this tell you about the structure of the atom?
14. What is the net charge on every atom? Explain why.
15. An oxide ion (oxygen ion) has a $2-$ charge. (Use your periodic table if necessary)
a.) How many protons does the oxide ion have?
b.) How many electrons does an oxide ion have?

PERIODIC TABLE OF THE ELEMENTS

	1 A	What do all of the elements that are shaded have in common?																$\begin{array}{\|c\|} \hline 8 \mathrm{AA} \\ \hline \begin{array}{c} 2 \\ \mathrm{He} \\ 4.0026 \end{array} \end{array}$
	1.0079	2A											3A	4A	5A	5 A	7 A	
2	$\stackrel{3}{\mathrm{Li}_{6.941}}$												$\begin{array}{\|c\|} \hline 5 \\ \mathbf{B} \\ 10.811 \end{array}$	${ }^{6}$	$\underset{14007}{\mathbf{N}}$	$\begin{aligned} & 8 \\ & 0 \end{aligned}$	$\stackrel{9}{F}$	$\begin{gathered} 10 \\ \mathrm{Ne} \end{gathered}$
3	$\begin{gathered} 11 \\ \mathrm{Na} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 24.30 \end{gathered}$	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	$\begin{gathered} 13 \\ \text { AI } \\ 26.98 \end{gathered}$	$\begin{gathered} 14 \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 30.974 \end{gathered}$	$\begin{gathered} 16 \\ \mathbf{S} \\ 32.06 \end{gathered}$	$\begin{gathered} { }^{17} \mathrm{Cl} \\ 35.453 \end{gathered}$	$\begin{gathered} 18 \\ \mathbf{A r}_{39.948} \end{gathered}$
4	$\begin{gathered} 19 \\ \mathbf{K} \\ 39.10 \end{gathered}$	$\begin{gathered} 20 \\ \mathrm{Ca} \\ 40.08 \end{gathered}$	$\begin{gathered} 21 \\ \mathbf{S C}_{44.96} \end{gathered}$	$\begin{gathered} 22 \\ \mathrm{Ti} \\ 47.90 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ 50.94 \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ 52.00 \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 54.938 \end{gathered}$	$\begin{gathered} 26 \\ \text { Fe } \\ 55.85 \end{gathered}$	$\begin{gathered} 27 \\ \text { Co } \\ 58.93 \end{gathered}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ 58.69 \end{gathered}$	$\underset{63.55}{\mathrm{Cu}^{29}}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 65.39 \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 69.72 \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 72.59 \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 74.92 \end{gathered}$	$\begin{gathered} 34 \\ \text { Se } \\ 78.96 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ 79.90 \end{gathered}$	$\begin{gathered} 36 \\ \mathbf{K r} \\ 83.80 \end{gathered}$
5	37 Rb 85.47	$\begin{gathered} 38 \\ \mathrm{Sr} \\ 87.62 \end{gathered}$	$\begin{gathered} 39 \\ \mathbf{Y} \\ 88.91 \end{gathered}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 91.22 \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N}_{92.91}^{(0)} \end{gathered}$	$\begin{aligned} & 42 \\ & \text { Mo } \\ & 95.94 \end{aligned}$	$\begin{aligned} & 43 \\ & \text { (98) } \end{aligned}$	44 Ru $\underset{101.1}{\mathrm{Ru}}$	$\begin{gathered} 45 \\ \mathbf{R h} \\ 102.91 \end{gathered}$		$\begin{gathered} 47 \\ \underset{107.87}{ } \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ 112.41 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 118.71 \end{gathered}$	$\begin{gathered} 51 \\ \text { Sb } \\ 121.75 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \mathbf{I}_{126.91} \end{gathered}$	$\begin{gathered} 54 \\ \mathbf{X e} \\ 131.29 \end{gathered}$
6	$\begin{gathered} 55 \\ \text { Cs } \\ 132.91 \end{gathered}$	$\begin{gathered} 56 \\ \text { Ba } \\ 137.33 \end{gathered}$	$\begin{gathered} \stackrel{57}{\mathrm{La}} \\ { }_{138.91} \end{gathered}$	$\begin{gathered} 72 \\ \mathbf{H f} \\ 178.49 \end{gathered}$	$\begin{gathered} 73 \\ \text { Ta } \\ 180.95 \end{gathered}$	$\begin{gathered} 74 \\ \mathbf{W} \\ 183.85 \end{gathered}$	Re 186.21	$\begin{gathered} 76 \\ \text { Os } \\ 190.2 \end{gathered}$	$\begin{gathered} 77 \\ \mathbf{I r} \\ 192.2 \end{gathered}$	$\begin{gathered} 78 \\ \text { Pt } \\ 195.08 \end{gathered}$	$\begin{gathered} 79 \\ \text { Au } \\ 196.97 \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ 200.59 \end{gathered}$	$\begin{gathered} 81 \\ \text { TI } \\ 204.38 \end{gathered}$	$\begin{gathered} 82 \\ \text { Pb } \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathbf{B i} \\ 208.98 \end{gathered}$	$\begin{aligned} & 84 \\ & \text { Po } \\ & \text { (209) } \end{aligned}$	85 At $\underset{(210)}{\text { At }}$	$\begin{aligned} & 86 \\ & \text { (222) } \\ & \text { (22) } \end{aligned}$
7	$\begin{gathered} 87 \\ { }_{(223)}^{87} \end{gathered}$	$\begin{gathered} 88 \\ \text { Ra } \\ 226.02 \end{gathered}$	$\begin{gathered} \hline 89 \\ { }^{89} \mathbf{A c} \\ 227.03 \end{gathered}$	Unq (261)	Unp (262)	$\begin{gathered} \text { Unh } \\ (263) \end{gathered}$	107 Uns (262)	108 Uno (265)	109 Une (266)									

$\stackrel{\rightharpoonup}{*}_{\text {Lanthanides }}$	$\begin{gathered} 58 \\ \mathrm{Ce} \\ 140.12 \end{gathered}$	$\begin{gathered} 59 \\ \mathbf{P r}_{140.91} \end{gathered}$	$\begin{gathered} 60 \\ \mathbf{N d} \\ \mathbf{N a 4 . 2 4} \end{gathered}$	$\begin{gathered} 61 \\ \mathbf{c m} \\ (145) \end{gathered}$	$\begin{gathered} 62 \\ \text { Sm } \\ 150.4 \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ 151.97 \end{gathered}$	$\begin{gathered} 64 \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} 65 \\ \mathbf{T b} \\ 158.93 \end{gathered}$	$\begin{gathered} 66 \\ \text { Dy } \\ 162.50 \end{gathered}$	$\begin{gathered} 67 \\ \text { Ho } \\ 164.93 \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ 167.26 \end{gathered}$	$\begin{gathered} 69 \\ \underset{168.93}{\mathbf{T m}} \end{gathered}$	$\begin{gathered} 70 \\ \mathbf{Y b} \\ 173.04 \end{gathered}$	$\begin{gathered} \mathrm{Hi}_{174.97}^{\mathrm{Lu}} \end{gathered}$
Actinides	$\begin{gathered} 90 \\ \text { Th } \\ 232.04 \end{gathered}$	$\begin{gathered} 91 \\ \text { Pa } \\ 231.04 \end{gathered}$	$\underset{238.03}{\mathbf{~}}$	$\begin{gathered} 93 \\ \mathbf{N p} \\ 237.05 \end{gathered}$	$\begin{aligned} & 94 \\ & \text { Pu } \\ & (244) \end{aligned}$	$\begin{gathered} 95 \\ \underset{(243)}{95} \end{gathered}$	$\begin{gathered} 96 \\ \text { Cm } \\ (247) \end{gathered}$	$\begin{gathered} \text { (247) } \end{gathered}$	$\begin{gathered} 98 \\ \mathbf{C f} \\ \text { (251) } \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ \text { (252) } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { Fm } \\ & \text { (257) } \end{aligned}$	$\begin{aligned} & 101 \\ & \text { Md } \\ & (258) \end{aligned}$	$\begin{aligned} & 102 \\ & \text { No } \\ & \text { (259) } \end{aligned}$	$\begin{gathered} 103 \\ \mathbf{1 0 7} \\ (260) \end{gathered}$

