\qquad Chem 162, Section: \qquad Group Number: \qquad

ALE 17. Phase Changes and Phase Diagrams

(Reference: 12.1-12.2 Silberberg $5^{\text {th }}$ edition)

How do temperature and pressure determine the phase of matter?

The Model: Heat and Phase Changes

The three phases of a substance that are of interest to chemists are solid, liquid, and gas. Depending on the pressure that the substance is experiencing, a temperature can be found that would put two phases in equilibrium with each other. Equilibrium is established when the number of molecules in each phase is no longer changing with time. The equilibrium is dynamic. That is, a molecule at one location of the system may go from phase α to phase β, but simultaneously somewhere else in the system another molecule goes from phase β to phase α.
at $0.00{ }^{\circ} \mathrm{C}$ and 1 atm :
at $100.00^{\circ} \mathrm{C}$ and 1 atm :
at $0.00^{\circ} \mathrm{C}$ and 1 atm :

$$
\Delta H_{\mathrm{fus}}^{\mathrm{o}}=6.01 \mathrm{~kJ}
$$

$\Delta H_{\text {vap }}^{0}=40.7 \mathrm{~kJ}$

A pure substance melts at a single temperature, the freezing point $\left(t_{f}\right)$. If the ambient pressure is 1 atm , it is called the normal freezing point (and symbolized as t_{f}). The following heating curve follows the temperature of 1 mole of water as heat is added to it. (The amount of added heat is zero when the water starts as ice at $-50^{\circ} \mathrm{C}$.)

Heat added (J)

Key Questions

1. Label the heating curve indicating when the water exists as: (1) a solid; (2) an equilibrium of solid and liquid; (3) a liquid; (4) an equilibrium of liquid and gas; and (5) a gas.
2. What is an "everyday word" that may be used instead of:
a. "fuses" to describe a solid becoming a liquid? \qquad
b. "crystallizes"? \qquad
c. "vaporizes"? \qquad
3a. In each of the "containers" below, using twelve •'s to represent 12 water molecules, sketch a "freeze frame" cartoon representing how the molecules might be look in each of the three phases.

Solid

Liquid

Gas
b. What differentiates solid, liquid and gas phases from each other? As part of your response discuss how the energy of attraction between particles compares with their energy of motion (i.e. their kinetic energy, E_{k}), the distances between particles, their compressibility and their relative viscosities (i.e. resistance to flow).
c. What types of forces, intramolecular or intermolecular.....
i.) prevent ice cubes from adopting the shape of their container? \qquad
ii.) are overcome when ice melts?
iii.) are overcome when liquid water is vaporized? \qquad
iv.) are overcome when gaseous water is converted to $\mathrm{H}_{2(g)}$ and $\mathrm{O}_{2(g)}$? \qquad
d. How is one phase converted into another phase? Explain.

4 a . According to the heating curve on page 1 , which one is true? (Circle your answer.)
i. The temperature decreases as more and more of the liquid is converted into a gas.
ii. A liquid boils at a single temperature.
iii. The temperature increases as more and more of the liquid is converted into a gas.
b. Explain why this observation is reasonable. (Where does the heat energy "go" during a phase change? What happens to the temperature as heat is added during a phase change? Why?)
c. Why is the heat of fusion $\left(\Delta H_{\text {fus }}\right)$ of a substance smaller than its heat of vaporization $\left(\Delta H_{\text {vap }}\right)$?
d. Why is the heat of sublimation $\left(\Delta H_{\text {subl }}\right)$ of a substance greater than its $\Delta H_{\text {vap }}$?
e. At a given temperature and pressure, how does the magnitude of the $\Delta H_{\text {vap }}$ of a substance compare with that of its heat of condensation? Explain.

Model: Calculating the Amount of Heat Involved in Phase Changes

Recall the equation: $\boldsymbol{q}=\boldsymbol{C} \cdot \boldsymbol{m} \cdot \Delta \boldsymbol{T}$ (where \boldsymbol{q} is the heat energy, \boldsymbol{C} is the specific heat capacity of the substance undergoing a temperature change, \boldsymbol{m} is the mass of the substance, and $\boldsymbol{\Delta T}$ is the change in the temperature: $\boldsymbol{\Delta T}=\boldsymbol{t}_{\boldsymbol{f}}-\boldsymbol{t}_{\boldsymbol{i}}$. This equation works ONLY when there is no phase change. You use it to find how much energy is required to change the temperature of a certain substance as long as you know the specific heat of the substance and as long as no change in state occurs.

Now for when there is a change in state: The energy required for a change of state is given a special name called enthalpy. So the "enthalpy of vaporization" (symbolized by $\boldsymbol{\Delta H} \boldsymbol{H}_{\text {vap }}$) of water is the energy needed to vaporize (or boil) one gram of water when the water is already at its boiling point. The $\boldsymbol{\Delta} \boldsymbol{H}_{\text {vap }}$ of water is $2260 \mathrm{~J} / \mathrm{g}$ (or $40.7 \mathrm{~kJ} / \mathrm{mol}$). So for each gram of liquid water at $100.0^{\circ} \mathrm{C}, 2260 \mathrm{~J}$ are required to vaporize it. Similarly, the enthalpy of fusion $\left(\Delta \boldsymbol{H}_{\text {fus }}\right)$ of $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ is $334 \mathrm{~J} / \mathrm{g}$ (or $\mathbf{6 . 0 1} \mathbf{k J} / \mathrm{mol}$). So each gram of ice at $0.0^{\circ} \mathrm{C}$ there are 334 J of energy required to melt it. (Fusion is melting.)

Key Questions

5a. How much heat (in J) must be added to 1 mol of liquid water at $100^{\circ} \mathrm{C}$ to convert it into steam?
b. Suppose you have 1.00 mol (i.e., 18.02 g) of liquid water at $0.0^{\circ} \mathrm{C}$ and add just enough heat to bring the temperature of the water to $100.0^{\circ} \mathrm{C}$, but no more heat is added. How much heat was added? What fraction of the water is converted into a gas? Show your work using units and sig. figs.
c. Suppose you have 1.00 mol of liquid water at $0.0^{\circ} \mathrm{C}$ and add 7540 J of heat to it (in order to get its temperature to $100^{\circ} \mathrm{C}$) and then you add an additional 8140 J of heat to it. What fraction of the water will have been converted into steam? At what temperature will the system be? Show your work.
6. Use the data below to calculate the total heat in Joules needed to convert 0.333 mol of ethanol gas at $300 .{ }^{\circ} \mathrm{C}$ and 1 atm to liquid ethanol at $25.0^{\circ} \mathrm{C}$ and 1 atm . Clearly show your work using dimensional analysis and correct significant figures.

BP of ethanol @ $1.00 \mathrm{~atm}=78.5^{\circ} \mathrm{C} ; \Delta H^{o}{ }_{\text {vap }}=40.5 \mathrm{~kJ} / \mathrm{mol} ; c_{\text {gas }}=1.43 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C} ; c_{\text {liq }}=2.45 \mathrm{~J} / \mathrm{g}{ }^{\circ} \mathrm{C}$

The Model: Phase Diagrams

A phase diagram shows you the combinations of pressure and temperature that will result in a substance being a solid, a liquid, or a gas. The following is a sketch of a phase diagram of the typical substance (but not of water). The thick curves represent the combinations of pressure and temperature that result in an equilibrium between two (or perhaps all three) of the phases. The dashed lines are drawn to emphasize a temperature that results in an equilibrium between two phases when the ambient pressure is 1 atm .

Temperature

Key Questions

7. Label the phase diagram above with "solid", "liquid", and "gas" in the appropriate regions.
8. Imagine that you have a substance in a cylinder and that there is a piston that you could push in or pull out to adjust the pressure that the substance is experiencing. You can also place the cylinder with the substance in a thermal bath to adjust its temperature.
a. What combination of pressure and temperature is likely to result in a solid? (Circle your choice.)
i. low pressure, low temperature
ii. low pressure, high temperature
iii. high pressure, low temperature
iv. high pressure, high temperature
b. What combination of pressure and temperature is likely to result in a gas? (Circle your choice.)
i. low pressure, low temperature
iii. high pressure, low temperature
ii. low pressure, high temperature
iv. high pressure, high temperature
9. What is the significance of the "triple point"? (i.e., What makes it special?)
10. What are the temperatures T^{\prime} and $\mathrm{T}^{\prime \prime}$ called?
\qquad
$\mathrm{T}^{\prime}=$
$\mathrm{T}^{\prime \prime}=$
11. Below is the phase diagram of carbon dioxide. (Note the exponential scale on the y-axis.)

a. Solid CO_{2} is referred to as "dry ice". Explain why dry ice sublimes at room conditions (i.e. 1 atm) and does not melt. Use the phase diagram of CO_{2} to illustrate your explanation.
b. At what temperature does dry ice sublime at a pressure of 760 mmHg ? \qquad Show how you arrived at your answer on the phase diagram above.
c. Suppose a sample of CO_{2} is placed in a cylinder with a piston and maintained at $-40^{\circ} \mathrm{C}$. If the pressure of the CO_{2} started at 1 atm and increased until it reached 1000 atm , what would happen to the CO_{2} ? At what pressure(s) would this(these) change(s) occur? Show how you arrived at your answer on the phase diagram above.
d. The "critical temperature" is the temperature above which a substance cannot be liquefied, no matter how much pressure it is under. What is T_{c} for CO_{2} ?
Show how you arrived at your answer on the phase diagram above.
12. Consider the phase diagram, below, for substance " X ".
a.) What phase(s) is (are) present at the following points?

$\mathrm{A}=$	$\mathrm{E}=$
$\mathrm{B}=$	$\mathrm{F}=$
$\mathrm{C}=$	$\mathrm{H}=$

b.) Which point corresponds to the critical point?

c.) Which curve corresponds to the conditions at which the solid-gas equilibrium exists?
d.) Describe what happens when you start at point A and increase the temperature a constant pressure.
e.) Describe what happens when you start at point H and decrease the pressure a constant temperature.
f.) Is liquid " X " more or less dense than solid " X "? Explain your reasoning.

