ALE 25. Units of Concentration

Answer Key

Important!!

- Check your responses with those below. Do not copy these answers onto your ALE—doing so is plagiarism and will not result in any learning. Rather, determine where you went wrong, what concepts you need to apply/learn, redo those problems that you missed and then recheck your answers. Seek help from the members in your group and from the instructor as needed.
- For answers that involve a calculation you must show your work neatly using dimensional analysis with correct significant figures and units to receive full credit. No work, no credit. Report numerical answers to the correct number of significant figures. CIRCLE ALL NUMERICAL RESPONSES

Exercises

1. Calculate the molarity of a solution made by diluting 25.0 mL of 6.15 M HCl to a volume of 0.500 L with water. Circle your answer.

$$
0.308 \mathrm{M} \mathrm{HCl}
$$

2. How would you prepare 3.5 L of 0.55 M NaCl from solid NaCl ? Circle your answer.

$$
1.1 \times 10^{2} \mathrm{~g} \mathrm{NaCl}
$$

3. Calculate molality of a solution containing 164 g of HCl in 753 g of water. Circle your answer.

$$
5.97 \mathrm{~m} \mathrm{HCl}
$$

4. Calculate the molality of a solution consisting of 2.77 mL of carbon tetrachloride $\left(\mathrm{CCl}_{4}, d=1.59\right.$ $\mathrm{g} / \mathrm{mL})$ in 79.5 mL of methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, d=1.33 \mathrm{~g} / \mathrm{mL}\right)$ Circle your answer.

$0.271 \mathrm{mCCl}_{4}$

5. A 28.8 mass \% aqueous solution of iron (III) chloride has a density of $1.280 \mathrm{~g} / \mathrm{mL}$.
a.) Calculate the molality of the solution. Circle your answer.

$2.49 \boldsymbol{m ~ F e C l}_{3}$

b.) Calculate the molarity of the solution. Circle your answer.

$2.27 \mathrm{M} \mathrm{FeCl}_{3}$

c.) Calculate the mole fraction of FeCl_{3}. Circle your answer.

$$
X_{\mathrm{FeCl}_{3}}=0.0430 \mathrm{FeCl}_{3}
$$

6.a. How many grams of solid NaOH are needed to prepare 250.0 g of $1.00 \%(\mathrm{w} / \mathrm{w}) \mathrm{NaOH}$ in water? Circle your answer.
2.50 g NaOH
b.) How many grams of water are needed? Circle your answer. $\quad 247.5 \mathrm{~g}$ Water
c.) How many mL of water at $20.0{ }^{\circ} \mathrm{C}$ are needed? $\left(\mathrm{d}_{\text {water }}\right.$ at $\left.20.0^{\circ} \mathrm{C}=0.9882 \mathrm{~g} / \mathrm{mL}\right)$ Circle your answer.

$$
250.5 \mathrm{~mL} \text { water }
$$

d.) What is the molality of the solution? Circle your answer. 0.253 m NaOH

6e.) What is the approximate freezing point of the solution? (K_{f} for water $\left.=1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$ Circle your answer.

$$
-0.939{ }^{\circ} \mathrm{C}
$$

7a. Concentrated hydrochloric acid purchased from chemical supply houses is $37 \% \mathrm{HCl}$ by mass. What mass in grams of conc. HCl is needed to make 1.0 liter of 0.10 M HCl ? Circle your answer.

9.9 g conc HCl

b.) How would you make the 0.1 M HCl solution? Circle your answer.
8. Calculate the molality $2.00 \% \mathrm{NaCl}(\mathrm{w} / \mathrm{w}) .(\mathrm{NaCl}=58.4425 \mathrm{~g} / \mathrm{mol})$ Circle your answer.

0.349 m NaCl

9. Conc. hydrobromic acid can be purchased as $40.0 \% \mathrm{HBr}$ by mass. The density of the solution is 1.38 g / mL. What is the molar concentration of $40.0 \% \mathrm{HBr} ?(\mathrm{HBr}=80.912 \mathrm{~g} / \mathrm{mol})$ Circle your answer.

6.81 M HBr

10. Dibutyl phthalate, $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{mw}=278 \mathrm{~g} / \mathrm{mol})$, is an oil sometimes worked into plastic articles to give them softness. It has a negligible vapor pressure ($\mathrm{P}=1$ torr @ $148^{\circ} \mathrm{C}$). What is the vapor pressure at $20.0^{\circ} \mathrm{C}$ of a solution of 20.0 g dibutyl phthalate in 50.0 g of octane, $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{mw}=114$ $\mathrm{g} / \mathrm{mol})$? The vapor pressure of pure octane at $20.0^{\circ} \mathrm{C}$ is 10.5 torr. Circle your answer.
9.02 torr
