\qquad Group Number: \qquad

ALE 25. Units of Concentration

(Reference: 13.5 Silberberg $5^{\text {th }}$ edition)

How do you convert from one unit of concentration to another?

Your Goal: to be able to convert from one unit of concentration in the model below to any other unit of concentration in the model using dimensional analysis (factor-label method) to show your work.

1. The first step in achieving this goal is to memorize each unit of concentration in the model below...

The Model: Units of Concentration

Unit of Concentration	Ratio	Major Uses
	(mol) of solute	Stoichiometric calculations involving solutions since $\mathrm{V}(\mathrm{L}) \times \mathrm{M}=\mathrm{mol}$ solute
Molarity (M)	volume (L) of solution	
Molality (m)	$\frac{(\mathrm{mol}) \text { of solute }}{\text { mass }(\mathrm{kg}) \text { of solvent }}$	Does not change with temp. \therefore used in BP elevation and FP depression calculations
Parts by mass (mass fraction)	$\frac{\text { mass of solute }}{\text { mass of solution }}=\text { mass fraction }$	Commly used in the biological, medical and environmental sciences. ppm and ppb are used when solute concentration is very low.
Parts per million $(\mathrm{ppm})=\left(\right.$ mass fraction) $\times 10^{6}$		
Parts per billion $(\mathrm{ppb})=\left(\right.$ mass fraction) $\times 10^{\mathbf{9}}$		
Mass \% (\% wiw or \% mim)	(mass fraction) $\times 100$	
Volume \% (\% viv)	$\left(\frac{\text { volume of solute }}{\text { volume of solution }}\right) \times 100$	
Mass/Volume \% (\% m/v)	$\left(\frac{\text { mass of solute }}{\text { volume of solution }}\right) \times 100$	
Mole fraction (X)	(mol) of solute	Used in Raolt's Law
	(mol) of solute + (mol) of solvent	vapor pressure of a solution

2. Your task now is to practice applying using these units of concentration. Consider the following questions when solving problems involving conversion of one unit of concentration to another:
a. What are the units of concentration given in the problem?
c. What is (are) the conversion factor(s) needed to get the desired unit of concentration?
b. What are the units you are converting to?
d. Set up the problems using dimensional analysis. Units should cancel to give the units desired.

3. Useful Conversion Factors

To convert between...	Conversion factor	Units of conversion factor
moles of a substance and its mass	molar mass or molecular weight	$\mathrm{g} / 1 \mathrm{~mol}$
mass of a substance and its volume	density, d	$\mathrm{g} / 1 \mathrm{~mL}$ or $\mathrm{g} / 1 \mathrm{~L}$ (for gases)
moles of solute to volume of solution	Molarity, M	mol solute / 1 L solution
moles of solute to kg solvent	molality, m	mol solute / 1 kg solvent

Exercises

Use dimensional analysis (factor-label method) and correct significant figures to solve the following problems. Circle you answer for each question.

1. Calculate the molarity of a solution made by diluting 25.0 mL of 6.15 M HCl to a volume of 0.500 L with water. Circle your answer.
2. How would you prepare 3.5 L of 0.55 M NaCl from solid NaCl ? Circle your answer.
3. Calculate molality of a solution containing 164 g of HCl in 753 g of water. Circle your answer.
4. Calculate the molality of a solution consisting of 2.77 mL of carbon tetrachloride $\left(\mathrm{CCl}_{4}, d=1.59\right.$ $\mathrm{g} / \mathrm{mL})$ in 79.5 mL of methylene chloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, d=1.33 \mathrm{~g} / \mathrm{mL}\right)$ Circle your answer.
5. A 28.8 mass $\%$ aqueous solution of iron (III) chloride has a density of $1.280 \mathrm{~g} / \mathrm{mL}$.
a.) Calculate the molality of the solution. Circle your answer.
b.) Calculate the molarity of the solution. Circle your answer.
c.) Calculate the mole fraction of FeCl_{3}. Circle your answer.
6.a. How many grams of solid NaOH are needed to prepare 250.0 g of $1.00 \%(\mathrm{w} / \mathrm{w}) \mathrm{NaOH}$ in water? Circle your answer.
b.) How many grams of water are needed? Circle your answer.
c.) How many mL of water at $20.0{ }^{\circ} \mathrm{C}$ are needed? ($\mathrm{d}_{\text {water }}$ at $20.0^{\circ} \mathrm{C}=0.9882 \mathrm{~g} / \mathrm{mL}$) Circle your answer.
d.) What is the molality of the solution? Circle your answer.

6e.) What is the approximate freezing point of the solution? (K_{f} for water $\left.=1.86^{\circ} \mathrm{C} / \mathrm{m}\right)$ Circle your answer.

7a. Concentrated hydrochloric acid purchased from chemical supply houses is $37 \% \mathrm{HCl}$ by mass. What mass in grams of conc. HCl is needed to make 1.0 liter of 0.10 M HCl ? Circle your answer.
b.) How would you make the 0.1 M HCl solution? Circle your answer.
8. Calculate the molality $2.00 \% \mathrm{NaCl}(\mathrm{w} / \mathrm{w}) .(\mathrm{NaCl}=58.4425 \mathrm{~g} / \mathrm{mol})$ Circle your answer.
9. Conc. hydrobromic acid can be purchased as $40.0 \% \mathrm{HBr}$ by mass. The density of the solution is 1.38 g / mL. What is the molar concentration of $40.0 \% \mathrm{HBr} ?(\mathrm{HBr}=80.912 \mathrm{~g} / \mathrm{mol})$ Circle your answer.

Recall Raoult's Law from the last ALE...

Raoult's Law

$\mathbf{P}_{\text {soln }}=\left(\mathbf{X}_{\text {solvent }}\right)\left(\mathbf{P}_{\text {solvent }}^{0}\right)$

Where...
$\mathrm{P}_{\text {soln }}=$ Vapor Pressure of Solution
$\mathrm{X}_{\text {solvent }}=$ mole fraction of solvent
$\mathrm{P}_{\text {osolvent }}=$ Vapor pressure of the pure solvent
10. Dibutyl phthalate, $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{4}(\mathrm{mw}=278 \mathrm{~g} / \mathrm{mol})$, is an oil sometimes worked into plastic articles to give them softness. It has a negligible vapor pressure ($\mathrm{P}=1$ torr @ $148^{\circ} \mathrm{C}$). What is the vapor pressure at $20.0^{\circ} \mathrm{C}$ of a solution of 20.0 g dibutyl phthalate in 50.0 g of octane, $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{mw}=114$ $\mathrm{g} / \mathrm{mol})$? The vapor pressure of pure octane at $20.0^{\circ} \mathrm{C}$ is 10.5 torr. Circle your answer.

