- 1. 5.12 g of Mg(NO₃)₂ is dissolved in 800.2g of water. The K_b for water is 0.512°C/m. Assume complete dissociation of the salt in solution. - a. What is the boiling point elevation in °C? 0.0663 °C At what temperature will the solution boil at 760 torr? 100.0663 °C - b. Would you expect the actual boiling point of this solution to be higher or lower than what you calculated? Explain. Lower—ion pairs will decrease solute particle concentration - c. Would you expect a NaNO₃ solution of equal molality to that of Mg(NO₃)₂, above, to have a higher or lower boiling point than that of the magnesium nitrate solution, above? Explain Lower—the sodium nitrate solution would have a lower solute concentration since one mole NaNO₃ dissociates in solution to produce two moles of ions (Na⁺ and NO₃), while each mole of Mg(NO₃)₂ dissociates to produce 3 moles of ions. - 2. How many grams of ethanol, CH_3CH_2OH , are needed to raise the boiling point of 500.0 mL of water by 2.5°C? The boiling point elevation constant $K_b = 0.512$ °C/molality. 112.5 g ethanol = 110 g ethanol - 3. Assuming the van't Hoff factor for NaCl to be 1.84, calculate the freezing point of an aqueous 0.500 molal NaCl solution? For water, $K_f = 1.86^{\circ}\text{C/m}$. $\Delta T_f = 1.71^{\circ}\text{C}$ FP = -1.71 $^{\circ}\text{C}$ - 4. The solubility of an unknown gas in water at 20. °C is 0.20 g/L when the partial pressure of the gas above the solution is 200. torr. What is the solubility of the gas in g/L when its partial pressure is 300. torr? 0.300 g/L (The solubility of a gas is directly proportional to its partial pressure above the solution) - 5. Vinegar is 5.0% acetic acid, CH₃COOH. - a. Calculate the molarity, M, of vinegar if 5.0% is w/v. 0.8326 M = 0.83 M acetic acid - b. Calculate the molality, m, of vinegar if 5.0% is w/w. 0.8765 M = 0.88 m acetic acid - 6. A 20.0% (w/w) aqueous solution of HCl has a density of 1.10 g/mL. Calculate the molarity of the solution. **6.034** M = 6.03 M HCl - 7. How does each of the following affect the vapor pressure of a liquid in a closed container? Explain your responses. - a. Decreasing the temperature \rightarrow decrease in VP - b. Increasing the volume of liquid →no change in VP - c. Increasing the volume of the container at constant temperature → no change in VP - d. The addition of a nonvolatile solute \rightarrow decrease in VP - e. The addition of a volatile solute \rightarrow decrease in VP of the solvent. (But the volatile solute will add to the total vapor pressure above the solution with the amount dependent on how volatile the solute is.) - 8. Ethylene glycol, a non-volatile liquid with formula C₂H₆O₂ and molar mass 62g/mol, is added to 2102g of water. At 89°C, the vapor pressure of this resulting solution is found to be 460 torr. How many grams of the non-volatile liquid were added to the water? The vapor pressure of pure water is 526 torr at 89°C. 1041 g = 1000 g ethylene glycol - 9. At 25 °C the vapor pressure for pure CHCl₃ is 172.0 torr, while that for pure CCl₄ is 98.3 torr. What is the vapor pressure of an ideal solution containing 61.1g of, CHCl₃, and 70.9g of carbon tetrachloride, CCl₄ at 25 °C? $P_T = P_{CHCl3} + P_{CCl4} = 90.5$ torr + 46.58 torr = 137.1 torr