The Course

Chemistry 162 is the second quarter of the three quarter general chemistry sequence (Chem& 161, 162, 163) for science, engineering, preprofessional (including pre-med, pre-vet, pre-dent, pre-pharmacy, etc.) and other majors that require a year or more of chemistry. It is assumed that all students have successfully passed Chem 161 with a minimum grade of 2.0. The topics studied include modern atomic theory, chemical bonding, molecular and electronic structure, valence bond theory, liquids and solids, and intermolecular forces (i.e. Chapters 7-13 in Chemistry by Silberberg, 5th edition). The course satisfies lab science distribution requirements for the AA and AS degree.

Mode of Instruction: Active Learning with little to no lecture

You are about to embark on a journey that will surely change your view of science and learning. This quarter through active learning exercises and collaborative group work and a minimum of lecturing you will generate knowledge about chemistry. Your instructor will be a learner too, a facilitator, and a resource for information. This method of learning will allow you to practice thinking, speaking, and writing as you formulate answers to weekly Active Learning Exercises (“ALE’s”). You will be actively involved everyday in a variety of different assignments so class is interesting (hopefully!!) and you won’t want to miss. You will probably learn much more chemistry in this course than in others where an instructor only lectures to you.

Why the use of active and collaborative learning in place of lectures? A wealth of research over the last 10 years indicates that little learning occurs during passive learning (i.e. lectures) and that lectures, at best, serve as indicators of what students should study outside of class. Moreover, controlled studies show that students involved in collaboratively taught classes out-perform those in the same course where lecturing is the major means of instruction.

You may find that collaborative/active learning requires an extensive effort. In addition, a few initially feel uncomfortable with this new style of instruction/learning. This is not unusual, in part because the majority of our past classes were taught in the traditional way—Recall the old adage, “It’s hard to teach an old dog new tricks”? Collaborative/active learning will force you to do the required readings/exercises on a timely basis, and in the process will allow you to develop more effective study strategies/habits, to use your study time outside of class more effectively. In time you will become more familiar and comfortable with your classmates and feel more at ease during group/class discussions. The skills that you learn and practice through active learning and collaborative group work in this class will stay with you long after you have ceased to remember many of the facts, concepts and theories of this course.

Course Prerequisites

1. Successful completion of Chem& 161 (minimum grade of 2.0), concurrent enrollment in Math& 142 or 106 or eligible for Math& 151 or higher.
2. Availability and desire to spend at least 2 hours of quality study time outside of class for every hour in class: i.e. at least 14 hours per week hours. WARNING! It is unlikely that you will do well in this class if you do not invest this amount of time!
3. An interest in learning about the natural world and a positive attitude is a great asset!

Course Materials

1. Chemistry: The Molecular Nature of Matter and Change, 5th edition (Earlier editions are O.K. to use, but page numbers may be a bit different) by Martin S. Silberberg, McGraw-Hill. This book has a web page with sample quizzes and other resources: http://www.mhhe.com/physsci/chemistry/silberberg/
2. Chemistry Laboratory Notebook: 100 Carbonless Sets of Pages with spiral binding (purchase at the GRCC bookstore!)
3. Scientific Calculator (bring to class daily). Note: Use of programmable calculators will not be allowed on exams.
4. Laboratory Safety Goggles
5. Other useful items: 6 inch ruler, pocket-sized stapler, 3-ring binder
Special Needs

If you believe you qualify for course adaptations or special accommodations under the Americans with Disabilities Act, it is your responsibility to contact the Disabled Students Services Coordinator, (253) 833-9111, ext. 2631, and provide the appropriate documentation. If you have already documented a disability or other condition, which would qualify you for special accommodations, or if you have emergency medical information or special needs I should know about, please notify me during the first week of class. You can reach me by phone at (253) 833-9111, ext. 4204, or you can schedule an office appointment to meet me in SC-214 during my posted office hours, or at another mutually determined time.

Grading Policy

<table>
<thead>
<tr>
<th>Points Possible (Approximate)</th>
<th>% of Grade (Approximate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm Exams (2 exams at 100 pts each)</td>
<td>200</td>
</tr>
<tr>
<td>(If it helps your grade, your lowest exam score will be replaced with your final exam %.)</td>
<td></td>
</tr>
<tr>
<td>Final Exam (Comprehensive—covers material for the entire quarter)</td>
<td>200</td>
</tr>
<tr>
<td>Group Quizzes (and other group activities)</td>
<td>~ 100</td>
</tr>
<tr>
<td>Lab Unknowns (2 at 30 points each)</td>
<td>60</td>
</tr>
<tr>
<td>Lab Reports, Prelab Assignments, etc.</td>
<td>~ 200</td>
</tr>
<tr>
<td>Homework Portfolio</td>
<td>~ 145</td>
</tr>
<tr>
<td>Recorder Reports, Strategy Analyst Reports and MiniQuizzes (Lowest score dropped)</td>
<td>~ 120</td>
</tr>
<tr>
<td>Totals (approximate) =</td>
<td>~ 1025</td>
</tr>
</tbody>
</table>

Grades are determined according to the following table based on a percentage of total points possible:

<table>
<thead>
<tr>
<th>Percent</th>
<th>Grade</th>
<th>Percent</th>
<th>Grade</th>
<th>Percent</th>
<th>Grade</th>
<th>Percent</th>
<th>Grade</th>
<th>Percent</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-100</td>
<td>4.0</td>
<td>88</td>
<td>3.3</td>
<td>81</td>
<td>2.6</td>
<td>74</td>
<td>1.9</td>
<td>67</td>
<td>1.2</td>
</tr>
<tr>
<td>94</td>
<td>3.9</td>
<td>87</td>
<td>3.2</td>
<td>80</td>
<td>2.5</td>
<td>73</td>
<td>1.8</td>
<td>66</td>
<td>1.1</td>
</tr>
<tr>
<td>93</td>
<td>3.8</td>
<td>86</td>
<td>3.1</td>
<td>79</td>
<td>2.4</td>
<td>72</td>
<td>1.7</td>
<td>65</td>
<td>1.0</td>
</tr>
<tr>
<td>92</td>
<td>3.7</td>
<td>85</td>
<td>3.0</td>
<td>78</td>
<td>2.3</td>
<td>71</td>
<td>1.6</td>
<td>64</td>
<td>0.9</td>
</tr>
<tr>
<td>91</td>
<td>3.6</td>
<td>84</td>
<td>2.9</td>
<td>77</td>
<td>2.2</td>
<td>70</td>
<td>1.5</td>
<td>63</td>
<td>0.7</td>
</tr>
<tr>
<td>90</td>
<td>3.5</td>
<td>83</td>
<td>2.8</td>
<td>76</td>
<td>2.1</td>
<td>69</td>
<td>1.4</td>
<td>62</td>
<td>0.6</td>
</tr>
<tr>
<td>89</td>
<td>3.4</td>
<td>82</td>
<td>2.7</td>
<td>75</td>
<td>2.0</td>
<td>68</td>
<td>1.3</td>
<td>< 62</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Note:
- Students that earn less than 62%, or who stop coming to class without officially withdrawing by the end of the 8th week of the quarter, will receive a grade of 0.0 This grade will be included in college GPA calculations.
- Keep track of your grades!!! It is strongly recommended that you keep track of all of your grades throughout the quarter on the grade record sheet found towards the end of this packet. There are two excellent reasons to do this:
 - If you keep track of your grades on individual assignments, you can calculate your class grade at any point in the quarter.
 - Instructors have been known to make record keeping mistakes. Protect yourself by keeping good records.
Pass/No Credit Grade Option

Students may elect to be evaluated on a "Pass" or "Non-Credit" basis rather than by decimal grades by filing a petition with enrollment services (253-833-9111 ext 2500) no later than the end of the 8th week of the quarter. For students who qualify, the registrar will convert the decimal grade submitted by the instructor either to pass (P ≥ 1.5) or to no credit (NC < 1.5). Any student who does not inform the registrar by the deadline may not choose the P/NC option.

Caution! Many universities will not award credit for a science or math course with a "P" grade if the course is required for a specific major (e.g. Biology, Pre-medicine, Pre-dental, etc.)

Assessment

Final Exam

A comprehensive final exam will be administered in SC-323 during the last week of the quarter—see the last page of the syllabus for the date and time. If it helps your grade, your lowest midterm exam score will be replaced with your final exam %.

Midterm Exams

Two exams will be given during the quarter. There will be no make-ups, however, if it helps your grade, your lowest exam score will be replaced with your final exam %.

Recorder Reports, Strategy Analyst Reports and MiniQuizzes (low score will be dropped)

One or more recorder reports and a Strategy Analyst Report may be given each week. The Recorder’s Report is based on the daily “ALE,” while the Strategy Analyst Report accesses the level and quality of each student’s group and class participation for the week. A brief MiniQuiz may be given at any time during class. MiniQuiz questions will be based on the fundamental ALE and/or lab concepts being studied. Missed MiniQuizzes cannot be made up.

Group Quizzes and other Group Activities

As an incentive for group members to collaborate, collaborative group activities (e.g. group quizzes) will be given. All members of the group receive the same grade so helping to prepare your team members can enhance your own score. Points will be deducted from the scores of individuals that missed activities on earlier in the week (~5 pts. per day missed), or a student may elect to do the group exercise individually in place of having attendance points deducted from their score. Let’s talk about it if you have a problem with all group members receiving the same score—sometimes it’s not justifiable (e.g. “slackers”)—Let me know your concerns.

Active Learning Exercises (ALE’s), Stamps, MiniQuizzes and Group Work

Learning chemistry (and most any subject!) is very much a "learn by thinking and doing" exercise. Because of this you will complete Active Learning Exercises in class followed by outside of class readings in your textbook and working on homework problems to solidify your understanding of the major topics covered this quarter. Discussing the ALE’s with other students in class and working on homework problems outside of class are the major vehicles for learning chemistry this quarter.

Each and every day you are accountable to arrive with your reading done and your ALE/homework problems completed. A brief MiniQuiz based on the fundamental concepts of the ALE’s and/or Labs being studied may be given at any time during class. MiniQuizzes help to give you regular feedback about the state of your understanding and act as an “incentive” for you to stay current with your work and studies in this class.

Group work is successful only when all members come prepared to contribute. Students that habitually arrive unprepared for class tend to do very poorly in this course. Contact your instructor A.S.A.P. if extenuating circumstances keep you from completing your assignments in a timely manner.
Portfolios

- **What’s a portfolio?** A Portfolio is *file folder* containing a collection of *ALE’s* and *homework assignments* that you complete during the quarter.

- **How is a portfolios organized?** Each assignment should be stapled *individually* and present in the order indicated by the “Portfolio Contents Sheet” that the instructor will provide a few days before each exam. To facilitate the evaluation of the portfolios, *do not attach the assignments to the file folder or to each other*. After each portfolio is returned to you with a grade, *remove all work* from your portfolio folder to make room for future homework assignments.

- **When are portfolios due?** A portfolio containing your complete and corrected ALE’s and homework assignments will be collected for grading *at the start of all exams this quarter*—see the quarterly schedule on the last page for specific due dates.

Portfolio Grading Policy

A grade will be assigned to each ALE and homework assignment in your portfolio based on the following criteria…

- **Full Credit** (depends on the assignment: 5 to 10 points): ALE and homework assignments bearing a stamp *and* that have corrections made to incorrect and/or incomplete answers according to the guidelines below. It is *your responsibility* to check and make corrections for *all ALE and homework questions*.

- **Follow these guidelines when making correction to ALE’s and Lab Reports**
 - Indicate if a response is correct by clearly recording a “check” next to the question number of *all questions* that you have checked with your team and/or an answer key.
 - For incorrect or incomplete responses: Corrections and additions should be clearly indicated by using *another color pen or by using a highlighter to highlight the correction or addition*. *Do not erase incorrect responses*—simple cross them out by putting a line through your original answer.
 - If space permits, write your corrections/additions next to your original response. *Do not erase incorrect responses*—simply cross them out by neatly putting a line through your original answer. Be original when making corrections and answering questions. Do not simply copy answers from the textbook, answer keys or from other students—this is of no help to you as little learning will take place.
 - Make corrections on separate paper *only* if there is insufficient space next to your original response. *Clearly indicate* on the top of the 1st page of the assignment and next to the individual questions that corrections are on separate paper stapled to the last page. Number your corrections as the original questions are numbered.

 50% to 90% of Full Credit: Assignments bearing a stamp that *lack corrections and/or are of inferior quality or incomplete*. The number of points earned will be based on the quality of the work.

 Half Credit: un stamped assignments that are *complete and have corrections*

 0 points: incomplete assignments without a stamp and corrections.
Weekly Lab and Group Activities

We meet for class on Tuesdays and Thursdays for two hours, and for one hour on Mondays Wednesdays and Fridays.

- **Mondays, Wednesdays and Fridays in SC-323 (Sec A: 9:00 – 9:50)** These days are usually used for collaborative group work such as the discussion of ALE problems, MiniQuizzes, discussion of lab activities/results and more. Brief lectures may be given to help clarify difficult concepts.

- **Tuesdays in SC-323 (Sec A: 8:00 – 9:50)** Tuesdays are typically be used for variety of learning activities. These include: collaborative group work on active learning exercises, taking exams and quizzes (both group and individual quizzes are given), discussing experimental data gathered the previous Thursday in lab, and more. Occasionally we may work in the lab on Tuesday.

- **Thursdays in SC-308 (Sec A: 8:00 – 9:50)** Thursdays will be used for performing chemistry lab experiments that are designed to complement topics discussed in lecture and to develop skills that are typically required of lab technicians and scientists worldwide.
 - Prelab assignments are often assigned and are due at the start of lab. Since prelab assignments are designed to help you be prepared for that day’s laboratory experiment, late prelab assignments are not accepted.
 - Lab reports are often due on the following Tuesday at the start of class.

- **Unknown Analyses.** Two of the labs you will complete this quarter (e.g. Allura Red Lab and Vitamin C Analysis Lab) will require an analysis of an unknown sample. For these labs an additional grade will be assigned based on the accuracy of your analysis. For maximum credit you must be within ±5% of the true value. You may repeat the laboratory if your results are unsatisfactory, but you will not earn full credit. Repeat experiments will be done on your own time and must be scheduled in advance with the laboratory technician. Details of the scoring are as follows:

<table>
<thead>
<tr>
<th>If your results are within,</th>
<th>... then your grade will be:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Attempt</td>
</tr>
<tr>
<td>± 5.0%</td>
<td>100% (30 pts)</td>
</tr>
<tr>
<td>± 7.5%</td>
<td>90%</td>
</tr>
<tr>
<td>± 10%</td>
<td>80%</td>
</tr>
<tr>
<td>± 15%</td>
<td>70%</td>
</tr>
<tr>
<td>± 20%</td>
<td>60%</td>
</tr>
<tr>
<td>> 20%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Classroom Policies

The following policies are in effect for this class:

- **Attendance.** Participation in the class is an important part of your success in this course, and you will be expected to attend at all times. Treat this class as if it were a job: When you cannot be in class it is expected that you will notify the instructor and your team of your inability to attend. A voice mail or e-mail message before the missed class, or as soon as possible, will be sufficient. Be sure to review the "special note" on the next page regarding attendance during pre-lab discussions.

- **Lab Attendance.** Attendance is mandatory for lab. You will not receive credit for any lab you do not attend and 2% will be deducted from your final percentage for the quarter for each lab session you miss. You will not pass the course if you miss three or more labs. Please note that some labs may not be made up.

- **Cell Phone / Electronic Device Policy.** To reduce disruptions, and out of respect to the instructor and students, class policy is that all cell phones and all non-note taking devices (including pagers, wireless devices, music players, etc.) must be turned off during class. Your teacher recognizes that emergencies do happen. If you feel you need to answer your cell phone during class, please leave the room quietly and take the call outside. You do not need to ask permission, just try not to disturb your fellow students. **Exception:** During an exam or quiz you will FAIL if the instructor sees your cell phone.

- **Late Work Policy.** Students are expected to turn in all homework assignments and laboratory experiment reports on the announced due date. An assignment is late if it is due at the start of class and it is not turned in at that time, or if an assignment is due at the end of class and the assignment is not turned in at that time. Extenuating circumstances do occasionally occur—Contact the instructor before an assignment is due if you are unable to meet deadlines due to an emergency.
 - **Graded assignments** (e.g. lab reports). Late work will be penalized as follows: 10% off per day late—maximum 4 days late. No credit if more than four days late. Assignments due on a Friday that are turned in on the following Monday will be penalized 20%.
 - **Stamped assignments** (e.g. ALE’s and homework assignments). Turn your work in on time—late work will not get stamped!! An assignment is late if it is due at the start of class and it is not turned in at that time, or if an assignment is due at the end of class and the assignment is not turned in at that time
 - **Exams.** Midterm exams may not be taken early, nor made up if missed—however, if it helps your grade, your final exam percentage will be used to replace your lowest midterm exam score. **Under no circumstances can the final exam be taken early.**
 - **Quizzes.** Individual (i.e. MiniQuizzes) and/or group quizzes are occasionally given. Missed quizzes cannot be made up; however, your lowest quiz score will be dropped.

- **Safety.** Because of the nature of the laboratory portion of this course safety is a concern of utmost importance. You will be expected to observe the following practices:
 - Notify the instructor immediately when a spill or injury occurs.
 - Immediately discuss with the instructor any situation that you feel may be dangerous or cause you discomfort.
 - Use proper, safe techniques regarding personal safety.
 - Use equipment for its intended purpose only, as directed by the instructor.
 - While enthusiastic participation is encouraged, the class will remain an academic environment in which learning can take place.
 - **Special Note:** A student who is not present for the pre-lab discussions of an experiment will not be permitted to remain in the laboratory while the rest of the class is conducting that experiment, nor will s/he be permitted to conduct that experiment at another time.
Classroom Policies (cont.)

- **Student Conduct.** Students are expected to conduct themselves in an appropriate manner just as they would outside the academic environment. Inappropriate conduct will be addressed verbally as a first warning. The second offense will be addressed in writing to the student and the Dean. The third offense may result in permanent removal from class. (WAC 132J-125-210)

- **Academic Honesty.** You are encouraged to study with other students in this course, but you are expected to do your own work on ALE’s, quizzes, exams and lab reports. Students are expected to produce original work. Another person’s ideas, data or graphics may be used with permission of the creator of the work if the original source is given credit. **Plagiarism** occurs when you knowingly submit someone else's ideas or words as your own. Plagiarism is an act of intentional deception that not only is dishonest, it robs you of the most important product of education—the actual learning. Should I suspect that you have plagiarized; I will talk with you one-on-one and ask you to prove that the work in question is your own. If you are found guilty of academic dishonesty, you will automatically fail that assignment. If you are caught plagiarizing again in the same quarter, you will fail this class. Examples of plagiarism include copying on exams, copying assignments, allowing others to copy your work, falsification of data or calculations, etc. Academic dishonesty will not be tolerated and can result in failure of this course and a letter sent to the Dean. (WAC 132J-125-200)

- **Antidiscrimination.** Discriminatory/derogatory language or actions regarding race, gender, ethnic/cultural background, sexual orientation, and physical/mental abilities will not be tolerated.

Chem 162 Learning Outcomes

Content-specific:

Specific Learning Outcomes for this class include the ability to:

1. Calculate the wavelength, frequency and/or energy of any form of electromagnetic radiation.
2. Explain the key differences between classical and modern atomic theory, including the particulate nature of light and the wave nature of matter.
3. State the quantum numbers for an electron in any given orbital and/or sub–level.
4. Explain the Heisenberg Uncertainty Principle and how it relates to the probability model for the electron.
5. Write the electron configuration, valence shell configuration, or draw the orbital diagram for any element in rows 1–6 of the periodic table.
6. Use the trends in periodic properties (e.g., atomic size, electron affinity, ionization energy and electronegativity) to predict chemical and or physical properties of the elements.
7. Write a Lewis structure for any ionic or covalent compound, including compounds with expanded octet configurations.
8. Calculate the energy change in a chemical reaction based on bond energies.
9. Predict the 3–D shape of a covalently bonded molecule using VSEPR.
10. Predict the polarity of a molecule, and from its polarity, to predict physical properties such as solubility, miscibility and boiling point.
11. Use advanced bonding theories (valence bond theory and molecular orbital theory) to explain the bonding in molecules.
12. Calculate the energy changes involved in various phase changes.
13. Use a phase diagram to predict the physical state of a substance under specified conditions of temperature and pressure.

Success in achieving these outcomes will be demonstrated by (1) problem assignments, (2) laboratory reports and (3) exams.
Laboratory–specific learning outcomes:
In addition to the outcomes above Learning Outcomes specific to the laboratory include the ability to:
1. Keep a well-organized laboratory notebook consistent with the handout “Format for Lab Reports”.
2. Devise experimental procedures.
3. Carry out standard laboratory procedures including filtration, pipetting, solution preparation, dilution, titration, mass analysis, and calorimetric analysis.
4. Use electronic equipment to conduct experimental analyses.
5. Present scientific data in an organized and readable form.
6. Graph scientific data and compute the slope and intercept of a straight line using linear regression.
7. Interpret scientific data and draw appropriate conclusions.
8. Statistically analyze data and draw appropriate conclusions regarding the accuracy and precision of experimental data.
9. Analyze unknown samples to within an accuracy of ±5%.
Success in achieving these outcomes will be demonstrated by laboratory reports, prelab assignments, exams and quizzes.

Campus-wide Learning Outcomes
In addition to the outcomes specific to this class the following Campus-wide Learning Outcomes will be a part of this class.

Written communication: Students will demonstrate the ability to:
1. Use clear organization of their thoughts as indicated by well-organized and logical writing.
2. Understand the material by expressing a clear sense of purpose, unity and focus in his/her writing.
3. Make connections between concepts developed in the course and topic specific applications.
4. Use correct spelling and grammar, including correct sentence structure, complete sentences, appropriate word choice, and punctuation.
Success in achieving these outcomes will be demonstrated by laboratory reports and essay questions on exams.

Quantitative Reasoning: Students will demonstrate the ability to:
1. Use arithmetic, algebra, geometry and logic in solving problems.
2. Use estimating skills to approximate the answers to numerical problems.
3. Translate experimental data to graphic form, and extract meaning from such symbolic representations.
Success in achieving these outcomes will be demonstrated by data acquisition, summarization and/or analysis in (1) problem assignments, (2) laboratory reports and (3) exams.

Critical Thinking: Students will demonstrate the ability to:
1. Recognize and use effective reasoning to evaluate information.
2. Differentiate between observations, such as trends in physical and chemical properties, and the explanation for those observations.
3. Provide reasons for the conclusions they reach and assess the relevance and adequacy of those reasons.
4. Connect past learning with current topics.
Success in achieving these outcomes will be demonstrated by (1) problem assignments, (2) laboratory reports and (3) exams.

Responsibility: Students will demonstrate the ability to:
1. Take responsibility for their own learning.
2. Accept stated/agreed upon policies, behavior and procedures.
3. Share knowledge and understanding with others in discussions in lecture and laboratory.
4. Work in teams in the laboratory.
Success in achieving these outcomes will be demonstrated by (1) completing and submitting assignments in a timely manner, (2) active and meaningful participation in discussions in lecture and lab, and (3) working cooperatively and responsibly with laboratory partners in completing experiments.

Aesthetic Awareness: Students will demonstrate the ability to:
1. Prepare data tables and graphs that are neat in appearance.
2. Produce written work with a clear structure, format, and appearance.
Success in achieving these outcomes will be demonstrated by laboratory reports and homework assignments.
Guidelines for Completing Active Learning Exercises (ALE’s)

1. **Overview.** Strive to have all assigned questions completed with quality responses by the due date for each ALE. Start as far in advance of the due date as possible—don’t sit down shortly before it is due and attempt to complete the whole assignment in one shot—little long-term learning will occur if you do so! With a diligent effort most students can complete 80-90% of the questions without much outside help. However, don’t panic if you do not understand everything on the ALE before coming to class. This is to be expected! Use class time with your team and, if needed, instructor office hours to tie up loose ends!

2. **Strategies for completing an ALE.** Read and carefully study the “Model” on the ALE and then answer the “Key Questions” and “Exercises” that follow it. **Now use your textbook as a resource:** find the relevant chapter and section(s) in your book (found on the first page of each ALE). To get an overview of the chapter read the chapter’s introduction, the sectional headings, the captions of all diagrams/illustrations and then the chapter summary at the end of the chapter. Now read the sections relevant to the ALE and work through all sample problems similar to those on the ALE. Now go back to the ALE and reexamine with a critical eye the model and your responses to the Key Questions and Exercises. Make corrections and additions to your responses as needed. Again, it is not expected that you get everything correct before coming to class with your ALE—what we expect is a good faith effort to have completed it to the best of your ability before you spend class time discussing the ALE with your team and coming to a consensus about the answers to the Key Questions and Exercises. Make corrections to your responses while discussing the ALE in class according to the guidelines on page 4 of the syllabus.

3. **Using the Book’s Index.** Avoid the temptation of simply scanning the index of your book for the pages of the book that relate to a particular question and transcribing portions of the textbook onto the ALE. Although you will get some nifty sounding answers, you will have learned and retained very little in the process.

4. **Plagiarism.** Don’t complete your ALE by copying answers from your friends and classmates. To do so prevents you from learning anything. You will get out of this collaboratively taught class only what you put into it. The process starts with you alone thinking about the ALE’s, finding pertinent information and formulating answers. **If you find yourself copying or wanting to copy answers from other students because you are not ready and have not done the work required, you should consider dropping the course.** Without individual effort on the ALE’s you will not succeed in learning very much and the group activities will make you feel and look uncomfortable because your mastery of the material will be well behind the rest of the class.

5. **Put Answers in your own words.** When you can formulate an answer to a question in your own words, you have mastered the concept and should do well on the exams. If you have copied answers (either from the text or a friend) you have only gotten practice in writing and have learned little to nothing at all. Because you will not have your friend or text to copy from during the exam, you will do poorly. **Memorization gets you nowhere in this class—learning major concepts gets you everything.**

6. **Alternate Resources.** Sometimes you will not find all the information you need to properly formulate your answers to the ALE questions. If this is the case, you will need to consult other resources, such as online resources, the library, a dictionary, etc.
The Road to Success—Some Tips...

1. Stay focused: don't let life's distractions derail you from your personal, academic and/or career goals:
 - Keep a positive attitude,
 - Dedicate your energy towards actions that will help you to be successful,
 - Work hard to achieve your goals, and
 - Have confidence in yourself!

2. If you need extra help in this class (or any other class!), take advantage of the instructor’s office hours and the help center in the 2nd floor of the Holman Library.

3. Visit the Instructor's and the Textbook's web pages for this class often since they have many useful study aids and practice problems.

4. Many students benefit greatly by being involved in a study group consisting of other members of this class. If you wish, exchange phone numbers and email addresses A.S.A.P. with a few people in this class.

5. Be intellectually active in class: participate actively in class discussions and ask questions.

6. Do the assigned reading and complete the Active Learning Exercises before the material is discussed in class. Make a list of questions you have concerning the assigned reading and/or the questions on the weekly Active Learning Exercises. Be sure to get clarifications during class time, with your study group, and/or during office hours.

7. Review and rewrite your class notes and the relevant material in your textbook immediately after class or as soon as possible.

8. Study daily: Develop a study plan in which you will study for this class at least 2 hours daily 7 days a week. Just as one cannot train for a marathon by training sporadically for several hours at a time, one can’t study sporadically for long periods of time and expect to learn with retention. Regular study sessions of one-hour duration or less are more effective than massive cram sessions.

9. Isolate yourself from distractions while studying.

10. Study efficiently: Don’t waste too much time on a tough problem or concept. Go on to the next problem and come back to the real stumpers later. Get help as needed from your fellow classmates and from your instructor. Often it’s only a few small details that may keep you from understanding something—what seems like a major stumbling block might in reality be something minor!

10. **Studying for an Exam**
 - Learn from your instructor the type of exam (essay, multiple choice, etc.)
 - Study regularly throughout the quarter
 - See the class website for study guides and practice questions.
 - Set up a study schedule and review all materials well before the exam.
 - Write out likely questions and answer them.
 - Form a study group, discuss the materials you will be tested on, and quiz your partners.
 - Get enough rest the night before the exam.

11. **Taking a Multiple Choice Exam**
 - Read each question carefully—underline key words within each question.
 - Before looking at the possible answers, form an answer in your mind.
 - Read each possible answer before making a choice.
 - Watch for words such as *always, never, only, or except.*
 - Don’t change your initial answer unless you are *absolutely certain* it’s wrong.

12. **Taking an Essay Exam**
 - Survey all essay questions and note the questions that are easy for you.
 - Estimate how much time you have to answer each question.
 - Answer easier questions first to build your confidence.
 - Read each question several times to ensure that you understand what is being asked—underline key words such as *analyze, discuss, define, or describe.*
 - Take a few moments to brainstorm and create a rough outline of your response.
 - Support each major idea with specific examples and detailed information.
 - Remember to begin each answer with an introduction that gives an overview of your response.
 - Conclude by briefly summarizing your answer.

13. **How to Boost your Learning Skills.** Do you run out of time on exams? Do you struggle to finish reading assignments? Is *Time Management* your Achilles heel? Have your grades reached a plateau? Check out the Center for Teaching and Learning at Stanford University for tips to boost your learning skills: http://ctl.stanford.edu/Student/learning_skills.html
Chemistry 162 Grade Record Sheet

It is recommended that you use the table below to keep track of your grades as the quarter progresses. Ensure that you totals agree with the instructor’s at the end of the quarter.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Points Scored</th>
<th>Points Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exam 1</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Exam 2</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Final Exam (If it helps your grade, your lowest exam score will be replaced with your final exam %)</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Portfolio of ALE’s and Homework Assignments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#1 (Due at start of Exam 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2 (Due at start of Exam 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3 (Due at start of Final Exam)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Scores (lab reports, prelabs, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Quizzes + Misc. Group Activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recorder Reports, Strategy Analyst Reports and MiniQuizzes (low score dropped)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>End of Quarter %</td>
<td></td>
<td>Quarter Grade</td>
</tr>
</tbody>
</table>

Chemistry 162 Syllabus - K. Marr – Winter 2010
Chem 162: Tentative Schedule Winter 2010

Caution! This schedule is *only approximate* and is subject to change!

<table>
<thead>
<tr>
<th>Week Starting</th>
<th>Topic</th>
<th>Reading</th>
<th>Lab</th>
</tr>
</thead>
</table>
| **Week 1. Jan. 4** | • Nature of Light & Atomic Spectra
• Bohr Atom | Ch 7 | Lab Drawer Check in
+ Lab 1. Atomic Spectrum of Hydrogen |
| **Week 2. Jan. 11** | • Wave particle duality
• The Quantum mechanical atom
• Energy levels & orbitals
• Electronic configurations | Ch 7-8 | Lab 2. Allura Red Analysis |
| **Week 3. Jan. 18** | Mon. Jan. 18. MLK Holiday: Campus closed
• Periodicity of atomic properties
• Atomic structure & reactivity | Ch 8 | Lab 3. Activity Series |
| **Week 4. Jan. 25** | • Ionic and Covalent Bonding
• **Exam 1:** Take in GRCC Testing Center *outside* of class time either Friday 01/29/10 or Saturday 01/30/10—your choice. Bring picture ID.
• **Portfolios Due on Monday Feb. 1** | Ch 9 | Lab 4.
Vitamin C Analysis
(Start on Tuesday, finish on Thursday) |
| **Week 5. Feb. 1** | • Electronegativity, Polar Covalent Bonds
• Metallic Bonding
• Lewis Structures | Ch 9-10 | Lab 5.
Lewis Structures and Model Building
(Do on Wed. /Thurs.) |
| **Week 6. Feb. 8** | • VSEPR and Molecular Shape
• Molecular Polarity | Ch 10 | Lab 6.
VSEPR & 3-D Molecular Structures |
| **Week 7. Feb. 15** | Mon. Feb. 15 President’s Day: Campus closed
• Valence Bond Theory & Hybrid Orbitals
• Types of Covalent Bonds
• Molecular Orbitals | Ch 11 | Lab 7.
Analytical Sleuths |
| **Week 8. Feb. 22** | • States of matter
• **Exam 2 (Thursday in SC-323): Portfolios Due at start of exam**
• Phase Changes | Chapter 12 | • Exam 2 in SC-323 on Thurs. 02/25/10
• HW Portfolios Due at start of exam |
| **Week 9. Mar. 1** | • Types of Intermolecular Forces
• Properties of Liquids, Solids, Crystals
• Types of Solutions and Prediction of Solubility | Ch 12 | Lab 8.
Evaporation and Intermolecular Attractions |
| **Week 10. Mar. 8** | • Energy Changes in the Solution Process
• Solubility as an Equilibrium Process
• Quantitative ways of Expressing Concentration
• Colligative Properties | Ch 13 | Lab 9.
Molar Mass From Freezing Pt. Depression
+ Lab Drawer Checkout |
| **Week 11. Mar. 15** | • Colligative Properties
Tuesday Mar. 16, 2010 Study Day:
No daytime classes;
8-10 a.m.: Review/Question Session in SC-323 (Attendance is optional) | | **No Lab this Week** |
| **Unit 3: Covalent Bonding & Intermolecular Forces: Liquids, Solids and Phase Changes** | **Final Exam** (Portfolio #3 due at start of Exam)
• **Chem 162 Section A:**
9–11 a.m. Thursday 3/18/10 in SC-323 | | |

Chemistry 162 Syllabus - K. Marr – Winter 2010
Page 12 of 12