Activity Series	of Metals (Cu,	Fe, Sn,	Zn, Mg)
Chem 150 - K.	Marr		

Name	
Section	n Team No.

1. Write the molecular and net ionic equation for the reaction of iron with 6 M hydrochloric acid—hint: it's a single displacement reaction and all the metals in the table below react with the acid to form 2+ ions, M²⁺. Include the physical states of all reactants and products—i.e. (s), (aq), (l) or (g).

Molecular equation:

Net ionic equation:

2. Complete the table below. Take note that transition metals (e.g. Cu, Fe and Zn) lose their s-level electrons before their d-level electrons, while post-transition metals (e.g. Sn) lose their p-level electrons before losing their s-level electrons.

Metal	Atomic Radius (nm)	Ionizat	and 2 nd ion Energies kJ/mol) 2 nd IE	Sum of IE ₁ & IE ₂ (kJ/mol)	Condensed Electron Configurations Metal, M Metallic Ion, M ²⁺		
Cu	0.128	746	1958	2704	Wietai, W		
Cu	0.126	740	1936	2704			
Fe	0.124	762	1562	2324			
Sn	0.141	708	1408	2116			
Zn	0.133	906	1733	2639			
Mg	0.160	738	1451	2189			

3.	Based on the ionization energies and the electron configurations of each metal and their corresponding ions	given in
	the table above, which metal would you predict to be the most reactive? Least reactive?	Explain
	your reasoning:	

4	D 1	. 1	1	. 4	111	1 .1		1 0		1
/	Racadio	n tha	data 11	1 that	ahla ahova	rank tha	matale in	order trom	most to	least active.
+ .	11005000	11 1110	uata n	1 11117 1	and and v_{i}	. Lauk inc	inclais in	0100 110111	THUST TO	icasi active.

Most active				Least active
	>	>	>	>

Explain your reasoning.

- 5. Would using a different acid change the order in #4, above? *Briefly explain*.
- 6. Would using a different concentration of acid change the order in #4, above? *Briefly explain*.

