Lab 4 Report Sheet - Chem 162
Vitamin C Analysis
Name $\qquad$
Team No. $\qquad$ Date $\qquad$ Section $\qquad$

## Experimental Results

Table 1. Data for standardization of the sodium thiosulfate solution

|  | Trial Number |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 (if needed) |
| Final Volume $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~mL})$ |  |  |  |  |
| Initial Volume $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~mL})$ |  |  |  |  |
| $\underset{(\mathrm{mL})}{\text { Volume } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}}$ |  |  |  |  |
| Average volume $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~mL})$ |  |  |  |  |
| $\begin{aligned} & \text { Volume } 0.0200 \\ & \mathrm{M} \mathrm{KIO}_{3}(\mathrm{~mL}) \end{aligned}$ |  |  |  |  |
| Average Molarity of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ |  |  |  |  |

Table 2. Data for the determination of the concentration of vitamin C in unknown \# $\qquad$


Table 3. Data for the determination of the concentration of vitamin C in Juice

|  | Trial Number |  |
| :---: | :--- | :--- |
|  | $\mathbf{1}$ | 2 |
| Final Volume $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~mL})$ |  |  |
| Initial Volume $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~mL})$ |  |  |
| Volume $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~mL})$ |  |  |
| Average volume $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~mL})$ |  |  |
| Volume 0.0200 M $\mathrm{KIO}_{3}(\mathrm{~mL})$ |  |  |
| Volume of Juice (mL) |  |  |
| Average Molarity of <br> Vitamin C in Juice |  |  |

Table 4. Nutritional data from the label of the juice

| Brand of juice used |  |
| :--- | :--- |
| Serving Size |  |
| Percent of recommended daily allowance of <br> Vitamin C per serving |  |
| US FDA Minimum Daily Allowance of Vitamin C | 60 mg |

## Analysis of Results

## Instructions:

- Show your work using dimensional analysis and correct significant figures.
- Please circle all numerical answers.


## Part 1. Standardization of Sodium Thiosulfate

1. Calculate the average volume of sodium thiosulfate used in the standardization titrations. Show your work below and enter the average volume in table 1. Circle your answer.
2. Use the data in table 1 to calculate the average molarity of your sodium thiosulfate solution. Show your work below and enter the average volume in table 1. Circle your answer.

Part 2. Determination of the concentration of vitamin C in unknown \# $\qquad$
3. Calculate how many moles of $\mathrm{I}_{3}{ }^{-}$are produced from the reaction between $\mathrm{KI}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{KIO}_{3}$. Circle your answer.
4. Use the average volume of sodium thiosulfate to calculate how many moles of $\mathrm{I}_{3}{ }^{-}$are consumed from the reaction with thiosulfate in each titration. Circle your answer.
5. The difference between the above two quantities will be the moles of $I_{3}{ }^{-}$that reacted with the ascorbic acid. Calculate the concentration of vitamin C in your unknown in moles per liter. Circle your answer.
6. Now calculate the concentration of vitamin C in your unknown in mg of Vitamin C per 100 mL of the unknown. Circle your answer.
7. After you have calculated the concentration of your unknown in moles vitamin $C$ per liter, see the instructor to check for accuracy. Remember, you will receive an additional grade based on the accuracy of your results! If you are unsatisfied with your results you may repeat the lab on your own time. However, any such make-ups must be scheduled in advance with the chemistry lab technician.

| If your results have a <br> percent error of... | ... then your grade will be: |  |  |
| :---: | :---: | :---: | :---: |
|  | First Attempt | Second Attempt | Third Attempt |
| $\pm 5.0 \%$ | $100 \%(30 \mathrm{pts})$ | $90 \%(27 \mathrm{pts})$ | $80 \%(24 \mathrm{pts})$ |
| $\pm 7.5 \%$ | $90 \%$ | $80 \%$ | $70 \%$ |
| $\pm 10 \%$ | $80 \%$ | $70 \%$ | $60 \%$ |
| $\pm 15 \%$ | $70 \%$ | $60 \%$ | $0 \%$ |
| $\pm 20 \%$ | $60 \%$ | $0 \%$ | $0 \%$ |
| $>20 \%$ | $0 \%$ | $0 \%$ | $0 \%$ |

## Part 3. Determination of the concentration of vitamin $\mathbf{C}$ in Juice

8. Calculate how many moles of $\mathrm{I}_{3}{ }^{-}$reacted with the ascorbic acid in your sample of juice. Circle your answer.
9. Calculate the concentration of vitamin C in your sample of juice in moles per liter. Circle your answer.
10. Now calculate the concentration of vitamin C in your sample of juice in mg of Vitamin $C$ per 100 mL juice. Circle your answer.
11. Use Excel to calculate the standard deviation and class average of the vitamin C concentration (in mg Vit C per 100 mL juice) for the juice and then comment on the precision of the class results. If there is poor precision, then give possible reasons for the precision being poor. Attach your Excel spreadsheet of the class data to the last page of this "report."

Class average: $\qquad$ $\mathrm{mgVit} \mathrm{C} / 100 \mathrm{~mL}$ juice

STDEV: $\qquad$
12. a.) Use the information gathered in table 4 to calculate the concentration of Vitamin C in the juice in mg vitamin C per 100 mL juice. Circle your answer.
b.) Compare the concentration of vitamin C in the juice as calculated in question 12a with that calculated from the class average in question 11. Explain any differences.

|  | Concentration Vitamin C in Juice <br> $(\mathrm{mg} / 100 \mathrm{~mL}$ juice $)$ |
| :--- | :---: |
| Calculated from juice label |  |
| Calculated experimentally |  |

## Conclusion

Concentration of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{~mol} / \mathrm{L})$ :

|  | Concentration of Vitamin C |  |
| :--- | :---: | :---: |
|  | $\mathrm{mol} / \mathrm{L}$ | $\mathrm{mg} / 100 \mathrm{~mL}$ |
| Unknown \#___ |  |  |
| Juice |  |  |

