Lab 4. Analysis of Vitamin C Prelab Lecture Notes

Part I — Preparation and Standardization of Sodium Thiosulfate

1. Prepare 500 mL of $\sim \mathbf{0 . 0 8} \mathbf{M}$ solution of sodium thiosulfate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$. How? ?
2. Standardization of the sodium thiosulfate, $\mathrm{Na}_{2} \underline{\mathbf{S}}_{2} \underline{\mathrm{O}}_{3}$

a.) Write the equation of the chemical reaction that occurs in the flask before titrating with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and indicate which reactant is limiting and which reactants are in excess.

Equation \# \qquad :
b.) Write the equation of the chemical reaction that occurs in when titrating with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. Indicate the limiting reactant.

Equation \# \qquad _:
c.) What happens to the color of the solution during the titration? Why?

- The red-brown color should fade and the solution will turn a pale yellow color as the \qquad is consumed in reaction \# \qquad .
- Add starch indicator. The solution should turn a deep blue, or possibly a green-brown.
- Continue titrating until the blue color has disappeared. Record the volume of thiosulfate used.
d.) Calculate the concentration (in $\mathrm{mol} / \mathrm{L}$) of the sodium thiosulfate solution if $\mathbf{3 6 . 8 1} \mathbf{~ m L ~ N a} \mathbf{N a}_{2} \mathbf{S}_{2} \mathrm{O}_{3}$ were required to reach the endpoint. Do the calculation as a "chain" calculation.
e.) How many trials should you do?

Part II - Analysis of an Unknown Sample containing Vitamin C

a.) Write the equation of the chemical reaction that occurs in the flask before a reaction occurs that involves Vitamin C and the before titration. Indicate which reactant is limiting and which reactants are in excess.

Equation \# \qquad :
b.) Write the equation of the chemical reaction that occurs between Vitamin C and a product of the equation above.

Indicate the limiting reactant.
Equation \# \qquad :
c.) Write the equation of the chemical reaction that occurs in when titrating with $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$

Equation \#

\qquad :
d.) Calculate the concentration (in $\mathbf{~ m o l} / \mathrm{L}$ and $\mathbf{m g}$ per $\mathbf{1 0 0} \mathbf{~ m L}$) of vitamin C in the unknown if $\mathbf{1 4 . 4 5} \mathbf{~ m L} \mathbf{0 . 0 8 1 5}$ $\mathbf{N a}_{2} \mathbf{S}_{2} \mathbf{O}_{3}$ were required to reach the endpoint. Hints:
i.) Find the moles of $\mathrm{I}_{3}{ }^{-}$formed in reaction \#3.
ii.) Use the data from the titration to find the moles I_{3}^{-}that were leftover unreacted in the reaction between the vitamin C and the $\mathrm{I}_{3}{ }^{-}$in reaction \#1.
iii.) Use (i.) and (ii.), above, to find the moles of Vit C ($176.129 \mathrm{~g} / \mathrm{mol}$) present in the 25.00 mL of the unknown and then calculate the concentration of Vit C in the unknown in $\mathrm{mol} / \mathrm{L}$ and mg / L

