\qquad
\qquad

ALE 12. Equilibria of Aqueous Solutions of Weak Acids \& Weak Bases

(Reference: $18.3-18.5$ Silberberg $5^{\text {th }}$ edition)
How is the pH of a solution related to the concentration of a weak acid?

The Model: Weak Acids

When the generic monoprotic weak acid (HA) is dissolved in water, the following reversible reaction occurs (eqn 1a).

$$
\begin{equation*}
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{A}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \tag{1a}
\end{equation*}
$$

Because the reaction is understood to be aqueous, it is often abbreviated as simply eqn $\mathbf{1 b}$.

$$
\begin{equation*}
\mathrm{HA} \rightleftharpoons \mathrm{~A}^{-}+\mathrm{H}^{+} \tag{1b}
\end{equation*}
$$

The equilibrium constant for the dissociation of a weak acid is known as the acid dissociation constant, $\boldsymbol{K}_{\mathrm{a}}$ (where the subscript "a" tells the reader that this constant refers to an acid.)

Key Question

1. Finish the law of mass action corresponding to eqn $\mathbf{1 b}$ (i.e., the dissociation of the weak acid HA).

$$
K_{\mathrm{a}}=
$$

The Model: Weak Bases

Lithium hydroxide is an example of a metal hydroxide that is soluble in but only partially ionizes in water.

$$
\mathrm{LiOH}(a q) \rightleftharpoons \mathrm{Li}^{+}(a q)+\mathrm{OH}^{-}(a q) \quad K_{\mathrm{b}}=0.6
$$

(The subscript "b" tells the reader that this constant refers to a base.) Since the number of soluble "inorganic" weak bases is quite few, we focus mainly on "organic" bases (i.e., amines). As presented in the last session, ammonia is a base in water. Methylamine $\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]$, dimethyl-amine [$\left.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right]$, and trimethylamine $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}\right]$ react with water in a similar fashion (see eqns 2, 3, and 4), having as conjugate acids the methylammonium cation, the dimethylammonium cation, and the trimethylammonium cation, respectively.

$$
\begin{gather*}
\mathrm{CH}_{3} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q) \tag{2}\\
\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}(a q)+\mathrm{OH}^{-}(a q) \tag{3}\\
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}(a q)+\mathrm{OH}^{-}(a q) \tag{4}
\end{gather*}
$$

Key Questions

2 a. It is convenient to represent the a weak base as simply "B". Use eqns 2, 3, and 4 in the Model to finish the chemical equation for the reaction that occurs when the generic organic base is dissolved in water (i.e., eqn 5).

$$
\begin{equation*}
\mathrm{B}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \stackrel{\rightharpoonup}{\rightleftharpoons} \tag{5}
\end{equation*}
$$

b. Finish the law of mass action corresponding to eqn 5 (i.e., the ionization of the weak base B in water. (Hint: Don't forget what we learned about previously about heterogeneous equilibria and laws of mass action!)

$$
\begin{equation*}
\boldsymbol{K}_{\mathbf{b}}= \tag{5a}
\end{equation*}
$$

3 a. A weak base B with ionization constant K_{b} has a conjugate weak acid BH^{+}with ionization constant K_{a}. Write the reversible chemical equation that occurs when BH^{+}(say, from a soluble salt in which the anion is a spectator ion) is dissolved in water (i.e., eqn $\mathbf{6}$).

$$
\begin{equation*}
\mathbf{B H}^{+}(\mathbf{a q}) \rightleftharpoons \tag{6}
\end{equation*}
$$

b. Finish the law of mass action corresponding to eqn $\mathbf{6}$ (i.e., the ionization of the weak acid BH^{+}).

$$
\begin{equation*}
K_{\mathrm{a}}= \tag{6a}
\end{equation*}
$$

4. Use the laws of mass action you wrote in Questions 2 b and 3 b as substitutions to show through a step-by-step derivation that $K_{\mathrm{a}} \cdot K_{\mathrm{b}}=10^{-14}$ for an acid-base conjugate pair.

$$
\boldsymbol{K}_{\mathrm{a}} \cdot \boldsymbol{K}_{\mathrm{b}}=
$$

The Model: Percent Ionization of an Acid or Base

The percent ionization of an acid (HA) or organic base (B) is given by eqns 7a and 7b

$$
\begin{equation*}
\% \text { ionization }=\frac{\left[\mathrm{A}^{-}\right]_{\mathrm{eq}}}{[\mathrm{HA}]_{\mathrm{o}}} \times 100 \quad(7 \mathbf{a}) \quad \% \text { ionization }=\frac{\left[\mathrm{BH}^{+}\right]_{\mathrm{eq}}}{[\mathrm{~B}]_{\mathrm{o}}} \times 100 \tag{7a}
\end{equation*}
$$

where [] $]_{\text {eq }}$ is the equilibrium concentration of a resulting ion (provided that the acid or base was the only source of the ion!) and [$]_{0}$ is the initial concentration of the acid or base.

Exercise

5. The K_{a} of hydrochloric acid has been estimated to be 10^{7}. In a $1 \mathrm{M} \mathrm{HCl}(a q)$ solution, the equilibrium molar concentration of undissociated HCl molecules is equal to $10^{-7} \mathrm{M}$. What is the percent ionization of a 1 M $\mathrm{HCl}(\mathrm{aq})$ solution? (1) Write the law of mass action for the dissociation of HCl . (2) Substitute the known values of K_{a} and $[\mathrm{HCl}]_{\mathrm{eq}}$. (3) Solve for [$\left.\mathrm{Cl}^{-}\right]$. Hint: Since HCl was the only substance dissolved in water, what is the relationship between $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{Cl}^{-}\right]$? (4) Employ the definition of percent ionization of an acid.)

Key Questions

6. Exercise \#5, above, hopefully served as a reminder from your General Chemistry I course as to what a strong acid is. What is a strong acid?
7. The K_{a} of nitric acid $\left(\mathrm{HNO}_{3}\right.$, a strong acid) has been estimated to be 10^{4}. The K_{a} of nitrous acid $\left(\mathrm{HNO}_{2}\right)$ is $4.5 \times$ 10^{-4}. What is the relationship between the value of K_{a} and the strength of an acid?
8. Suppose HA and HB are two acids with ionization constants such that $K_{\mathrm{a}}(\mathrm{HA})>K_{\mathrm{a}}(\mathrm{HB})$.
a. Which is the stronger acid: HA or HB? (Circle your answer.)
b. Look back at Question 4. Place a " $<$ " or a " $>$ " in the blank that makes the inequality correct.

$$
K_{\mathrm{b}}\left(\mathrm{~A}^{-}\right) \quad K_{\mathrm{b}}\left(\mathrm{~B}^{-}\right)
$$

c. Which is the stronger base: A^{-}or B^{-}? (Circle your answer.)

Exercises

9. A 0.10 M acetic acid solution is prepared. The K_{a} of acetic acid is 1.8×10^{-5}. (1) What is the pH of this solution? (Hints: Set up an ICE table. Let " x ' represent $\left[\mathrm{H}^{+}\right]_{\text {eq }}$. Substitute the algebraic expressions into the law of mass action. Make an assumption that will simplify the algebra and solve for the variable.) (2) What is the percent ionization of this solution? (Hint: What is the relationship between $\left[\mathrm{H}^{+}\right]_{\mathrm{eq}}$ and $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]_{\mathrm{eq}}$?)
10. A $2.0 M\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}(a q)$ solution is 0.61% ionized. What is the K_{a} of the trimethylammonium cation? [Hints: Use the definition of the percent ionization of a weak base to determine what the equilibrium concentration of the trimethylammonium cation is in a 2.0 M aqueous solution of trimethylamine. Use an ICE table to determine the equilibrium concentrations of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}, \mathrm{OH}^{-}$, and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$in a 2.0 M $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}(\mathrm{aq})$ solution. Use the law of mass action to determine K_{b} for $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$. Finally determine the K_{a} of $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{NH}^{+}$.]
11. Use the figure to the right to determine if $K c<1$ for each reaction below. Explain your reasoning/show your work.
a. $\quad \mathrm{H}_{2} \mathrm{PO}_{4}^{-}{ }_{(a q)}+\mathrm{F}_{(a q)}^{-} \rightleftharpoons \mathrm{HPO}_{4}{ }^{2-}{ }_{(a q)}+\mathrm{HF}_{(a q)}$
b. $\mathrm{CH}_{3} \mathrm{COO}_{(a q)}^{-}+\mathrm{HSO}_{4}^{-}{ }_{(a q)} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}_{(a q)}+\mathrm{SO}_{4}^{2-}{ }_{(a q)}$

12. A sample of 0.0001 MHCl has a $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$close to that of $0.1 M \mathrm{CH}_{3} \mathrm{COOH}$. Are acetic acid and hydrochloric acid equally strong in these examples? Explain.
13. A $0.035 M$ solution of a weak acid (HA) has pH of 4.88 . What is the K_{a} of the acid? Show your work.
14. Hydrofluoric acid, HF, has a K_{a} of 6.8×10^{-4}. What are $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, $\left[\mathrm{F}^{-}\right]$and $\left[\mathrm{OH}^{-}\right]$in 0.75 MHF ? Show your work.
15. Hypochlorous acid, HClO , has a pK_{a} of 7.54 . What are $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right], \mathrm{pH},\left[\mathrm{ClO}^{-}\right]$and $[\mathrm{HClO}]$ in 0.115 M HClO ? Show your work. Hint: Just as pH is the negative \log of the hydronium ion, pKa is the negative \log of the $\mathrm{K}_{\mathrm{a}}: \mathrm{pKa}=-\log \mathrm{K}_{\mathrm{a}}$
16. Write the balanced equation and K_{b} expression for the benzoate ion (a Bronsted-Lowry base), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$, in water.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons
$$

$$
K_{b}=
$$

17. The K_{a} of benzoic acid, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$, is 6.3×10^{-5}. Calculate the K_{b} of the benzoate ion, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$. Hint: See your response to question \#4!
18. Calculate the pH of 0.100 M sodium phenolate, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONNa}^{+}$, the sodium salt of phenol. The K_{a} of phenol is 1.0×10^{-10}. Hints: Calculate the K_{b} of the phenolate ion, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}$, and then set up an ICE table to calculate $\left[\mathrm{OH}^{-}\right]$. Now use K_{w} to calculate $\left[\mathrm{H}^{+}\right]$and then calculate the pH .

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{OH}^{-}(a q)+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}(a q) \quad K_{b}=?
$$

