Name	Chem 163 Section:	Team Number:

ALE 12. Equilibria of Aqueous Solutions of Weak Acids & Weak Bases

(Reference: 18.3 – 18.5 Silberberg 5th edition)

How is the pH of a solution related to the concentration of a weak acid?

The Model: Weak Acids

When the generic *monoprotic* weak acid (HA) is dissolved in water, the following *reversible* reaction occurs (eqn 1a).

$$HA(aq) + H2O(l) \rightleftharpoons A^{-}(aq) + H3O^{+}(aq)$$
 (1a)

Because the reaction is *understood* to be aqueous, it is often abbreviated as simply eqn 1b.

$$HA \rightleftharpoons A^- + H^+$$
 (1b)

The equilibrium constant for the dissociation of a weak acid is known as the acid dissociation constant, K_a (where the subscript "a" tells the reader that this constant refers to an $\underline{\mathbf{a}}$ cid.)

Key Question

1. Finish the law of mass action corresponding to eqn **1b** (*i.e.*, the dissociation of the weak acid HA).

$$K_{\rm a} =$$

The Model: Weak Bases

Lithium hydroxide is an example of a metal hydroxide that is soluble in but only partially ionizes in water.

$$LiOH(aq) \rightleftharpoons Li^{+}(aq) + OH^{-}(aq)$$
 $K_b = 0.6$

(The subscript "b" tells the reader that this constant refers to a $\underline{\mathbf{b}}$ ase.) Since the number of soluble "inorganic" weak bases is quite few, we focus mainly on "organic" bases (*i.e.*, amines). As presented in the last session, ammonia is a base in water. Methylamine [CH₃NH₂], dimethyl-amine [(CH₃)₂NH], and trimethylamine [(CH₃)₃N] react with water in a similar fashion (see eqns 2, 3, and 4), having as conjugate acids the methylammonium cation, the dimethylammonium cation, and the trimethylammonium cation, respectively.

$$CH_3NH_2(aq) + H_2O(l) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)$$
 (2)

$$(CH_3)_2NH(aq) + H_2O(l) \rightleftharpoons (CH_3)_2NH_2^+(aq) + OH^-(aq)$$
 (3)

$$(CH_3)_3N(aq) + H_2O(l) \rightleftharpoons (CH_3)_3NH^+(aq) + OH^-(aq)$$
 (4)

Key Questions

2 a. It is convenient to represent the a weak base as simply "B". Use eqns 2, 3, and 4 in the Model to finish the chemical equation for the reaction that occurs when the generic organic base is dissolved in water (i.e., eqn 5).

$$B(aq) + H_2O(l) \rightleftharpoons$$
 (5)

b. Finish the law of mass action corresponding to eqn 5 (*i.e.*, the ionization of the weak base B in water. (*Hint*: Don't forget what we learned about previously about heterogeneous equilibria and laws of mass action!)

$$K_{\rm b} =$$
 (5a)

3 a. A weak base B with ionization constant K_b has a conjugate weak acid BH⁺ with ionization constant K_a . Write the reversible chemical equation that occurs when BH⁺ (say, from a soluble salt in which the anion is a spectator ion) is dissolved in water (*i.e.*, eqn 6).

$$BH^{+}(aq) \rightleftharpoons \tag{6}$$

b. Finish the law of mass action corresponding to eqn 6 (i.e., the ionization of the weak acid BH⁺).

$$K_{\mathbf{a}} =$$
 (6a)

4. Use the laws of mass action you wrote in Questions 2b and 3b as substitutions to show through a step-by-step derivation that $K_a \cdot K_b = 10^{-14}$ for an acid-base conjugate pair.

$$K_{\rm a} \cdot K_{\rm b} =$$

The Model: Percent Ionization of an Acid or Base

The percent ionization of an acid (HA) or organic base (B) is given by eqns 7a and 7b

% ionization =
$$\frac{[A^{-}]_{eq}}{[HA]_{o}} \times 100$$
 (7a) % ionization = $\frac{[BH^{+}]_{eq}}{[B]_{o}} \times 100$ (7b)

where []_{eq} is the equilibrium concentration of a resulting ion (provided that the acid or base was the only source of the ion!) and []_o is the initial concentration of the acid or base.

Exercise

5. The K_a of hydrochloric acid has been estimated to be 10^7 . In a 1 M HCl(aq) solution, the equilibrium molar concentration of undissociated HCl molecules is equal to 10^{-7} M. What is the percent ionization of a 1 M HCl(aq) solution? (① Write the law of mass action for the dissociation of HCl. ② Substitute the known values of K_a and [HCl]_{eq}. ③ Solve for [Cl]. *Hint*: Since HCl was the only substance dissolved in water, what is the relationship between [H⁺] and [Cl]? ④ Employ the definition of percent ionization of an acid.)

Key Questions

- 6. Exercise #5, above, hopefully served as a reminder from your General Chemistry I course as to what a strong acid is. *What is a strong acid*?
- 7. The K_a of nitric acid (HNO₃, a strong acid) has been estimated to be 10^4 . The K_a of nitrous acid (HNO₂) is 4.5×10^{-4} . What is the relationship between the value of K_a and the strength of an acid?
- 8. Suppose HA and HB are two acids with ionization constants such that $K_a(HA) > K_a(HB)$.
 - a. Which is the stronger acid: <u>HA</u> or <u>HB</u>? (*Circle your answer*.)
 - b. Look back at Question 4. Place a "<" or a ">" in the blank that makes the inequality correct.

$$K_b(A^-) _ K_b(B^-)$$

c. Which is the stronger base: A or B? (Circle your answer.)

Exercises

9. A 0.10 M acetic acid solution is prepared. The K_a of acetic acid is 1.8×10^{-5} . ① What is the pH of this solution? (*Hints*: Set up an ICE table. Let "x' represent $[H^+]_{eq}$. Substitute the algebraic expressions into the law of mass action. Make an assumption that will simplify the algebra and solve for the variable.) ② What is the percent ionization of this solution? (*Hint*: What is the relationship between $[H^+]_{eq}$ and $[CH_3COO^-]_{eq}$?)

10. A 2.0 M (CH₃)₃N(aq) solution is 0.61% ionized. What is the K_a of the trimethylammonium cation? [*Hints*: Use the definition of the percent ionization of a weak base to determine what the equilibrium concentration of the trimethylammonium cation is in a 2.0 M aqueous solution of trimethylamine. Use an ICE table to determine the equilibrium concentrations of (CH₃)₃N, OH⁻, and (CH₃)₃NH⁺ in a 2.0 M (CH₃)₃N(aq) solution. Use the law of mass action to determine K_b for (CH₃)₃N. Finally determine the K_a of (CH₃)₃NH⁺.]

11. Use the figure to the right to determine if Kc < 1 for each reaction below. *Explain your reasoning/show your work*.

a.
$$H_2PO_4^-(aq) + F_-(aq) \rightleftharpoons HPO_4^{2-}(aq) + HF_-(aq)$$

b. $CH_3COO_{(aq)}^{-} + HSO_{4(aq)}^{-} \rightleftharpoons CH_3COOH_{(aq)} + SO_{4(aq)}^{-2}$

16. Write the balanced equation and K_b expression for the benzoate ion (a Bronsted-Lowry base), $C_6H_5COO^-$, in water.

$$C_6H_5COO^-(aq) + H_2O(l) \rightleftharpoons$$

$$K_b =$$

17. The K_a of benzoic acid, C_6H_5COOH , is 6.3 x 10^{-5} . Calculate the K_b of the benzoate ion, $C_6H_5COO^-$. *Hint*: See your response to question #4!

18. Calculate the pH of 0.100 M sodium phenolate, $C_6H_5O^*Na^+$, the sodium salt of phenol. The K_a of phenol is 1.0 x 10^{-10} . *Hints*: Calculate the K_b of the phenolate ion, $C_6H_5O^-$, and then set up an ICE table to calculate [OH $^-$]. Now use K_w to calculate [H $^+$] and then calculate the pH.

$$C_6H_5O^{-}(aq) + H_2O(l) \rightleftharpoons OH^{-}(aq) + C_6H_5OH(aq)$$
 $K_b = ?$