Name	Chem 163 Section:	Team Number:

ALE 18. pH Dependent Solubility

(Reference: 19.3 Silberberg 5th edition)

How can an acid be used to dissolve an "insoluble" species?

The Model: Insoluble Metal Hydroxides as Weak Bases

When placed in water, "insoluble" metal hydroxides are weak bases.

$$M(OH)_m(s) \Rightarrow M^{m+}(aq) + m OH(aq)$$

The solubility product constant of the metal hydroxide determines how great the concentration of hydroxide ion (and therefore the pH) will be.

$$K_{\rm sp} = [\mathbf{M}^{m^+}][\mathbf{OH}^-]^m$$

$$K_{\mathbf{w}} = [\mathbf{H}^{+}][\mathbf{O}\mathbf{H}^{-}]$$

$$pH = -log[H^+]$$

Exercises

1. The $K_{\rm sp}$ of Ni(OH)₂ is 2.8×10^{-16} . What is the pH of a saturated Ni(OH)₂(aq) solution? (*Hint*: When you set up the law of mass action, consider what stoichiometric relationship exists between [Ni²⁺]_{eq} and [OH⁻]_{eq}.)

2. Due to the high solubility of salts such as nickel(II) nitrate, it is very easy to make a $0.1 M \, \mathrm{Ni^{2^+}}(aq)$ solution. However, since nickel(II) hydroxide has such a small solubility product, the solid tends to precipitate out of solution soon after the original salt is dissolved. To prevent the nickel(II) hydroxide from precipitating, one can add a couple of drops of strong acid to the $\mathrm{Ni^{2^+}}(aq)$ solution. If one wants to prepare a $0.1 \, M \, \mathrm{Ni^{2^+}}(aq)$ solution and prevent the nickel(II) hydroxide from precipitating, what must the maximum pH of the solution be?

The Model: Simultaneous Equilibria

To form the nickel(II) hydroxide precipitate, we can think of the Ni²⁺ ions as abstracting OH⁻ ions out of what naturally is present in water. Here, we consider the process of simultaneous equilibria occurring in solution.

$$H_2O(l) \Rightarrow H^+ + OH^-$$

$$K_1$$

$$Ni^{2+} + 2OH^- \Rightarrow Ni(OH)_2(s)$$

$$K_2$$

So that Equilibrium 1 produces as much hydroxide as Equilibrium 2 consumes, Equilibrium 1 is multiplied through by two.

Key Questions

3 a. Finish the law of mass action for Equilibrium 1: $H_2O(l) \Rightarrow H^+ + OH^-$

$$K_1 =$$

- b. What is the numerical value of K_1 ?
- c. Let Equilibrium 3 be the resultant reversible chemical equation when Equilibrium 1 is multiplied through by two. Write Equilibrium 3 below.
- d. Finish the law of mass action for Equilibrium 3.

$$K_3 =$$

- e. Compare the law of mass action for Equilibrium 3 to the law of mass action for Equilibrium 1. What is the numerical value of K_3 ?
- 4 a. Finish the law of mass action for Equilibrium 2: $Ni^{2+} + 2OH^- \Rightarrow Ni(OH)_2(s)$

$$K_2 =$$

- b. What is the numerical value of K_2 ? (Revisit Exercise #1.)
- 5 a. Let Equilibrium 4 be the algebraic sum of Equilibrium 2 and Equilibrium 3. Write Equilibrium 4.
 - b. Finish the law of mass action for Equilibrium 4.

$$K_4 =$$

c. Compare the law of mass action for Equilibrium 4 to the laws of mass action for Equilibria 2 and 3. How is K_4 related to K_2 and K_3 ? What is the numerical value of K_4 ?

6. When equilibria with constants $K_{\rm I}$ and $K_{\rm II}$ are algebraically added together, how is the value of the resultant reversible reaction's equilibrium constant ($K_{\rm net}$) determined? <u>Circle your choice</u>.

i.
$$K_{\text{net}} = K_{\text{I}} + K_{\text{II}}$$

v.
$$K_{\text{net}} = K_{\text{I}} \cdot K_{\text{II}}$$

ii.
$$K_{\text{net}} = \sqrt{(K_{\text{I}})^2 + (K_{\text{II}})^2}$$

vi.
$$K_{\text{net}} = K_{\text{I}} / K_{\text{II}}$$

iii.
$$K_{\text{net}} = |K_{\text{I}} - K_{\text{II}}|$$

vii.
$$K_{\text{net}} = K_{\text{II}} / K_{\text{I}}$$

iv.
$$K_{\text{net}} = \sqrt{K_{\text{I}} \cdot K_{\text{II}}}$$

viii. K_{net} is either K_{I} or K_{II} , whichever is smallest

Exercise

7. Use Equilibrium 4 (law of mass action in Question 5b and value of K_4 in Question 5c) to determine at what pH (or lower) must a 0.1 M Ni²⁺(aq) solution be maintained in order to prevent the nickel(II) hydroxide from precipitating. (Compare this answer to the one you obtained in Exercise #2.)

Key Questions

8. The K_{a1} and K_{a2} of H₂S are 9.5×10^{-8} and 1×10^{-19} , respectively. What is $K_{a,total}$ for the following reversible reaction?

$$H_2S(aq) \Rightarrow 2 H^+(aq) + S^{2-}(aq)$$

(*Hint*: What are the reversible reactions governed by K_{a1} and K_{a2} ? And how are these reactions related to the above "net" reversible reaction? See Question 6.)

9 a. Metal sulfides are notoriously insoluble in water. Complete and balance the reversible reaction showing a metal (II) sulfide dissolving in a strong acid to yield aqueous hydrogen sulfide and metal cations.

$$MS(s) + \underline{\qquad} = H_2S(aq) + \underline{\qquad} (1)$$

- b. What is the K_{net} of eqn 1 (the reversible reaction in Question 9a) in terms of $K_{\text{a,total}}$ of H₂S and the K_{sp} of the metal sulfide? (*Hint*: How can you add the reversible reaction in Question 8 to the reversible dissolution of solid MS to yield eqn 1?)
- c. Which of the following could one use an acidified hydrogen sulfide solution to dissolve? <u>Explain</u>. (There may be more than one! *Hint*: Compared to a value of 1, what value must the K_{net} of eqn 1 have in order for the forward reaction to proceed more than the reverse reaction?)

Metal Sulfide	K_{sp}
HgS	6.4×10^{-53}
CuS	1.3×10^{-36}
PbS	9.0×10^{-29}

Metal Sulfide	K_{sp}
ZnS	2.9×10^{-25}
FeS	1.6×10^{-19}
MnS	4.7×10^{-14}

- 10. Circle the member of each pair below that has a solubility that is affected by pH and then write the appropriate equations to explain why.
 - a. CaF₂ vs. CaCl₂
 - b. CuBr₂ vs. Ca₃(PO₄)₂
 - c. AgCl vs. Cu(OH)₂

Exercise

11. Consider iron (II) sulfide, which has a moderate solubility in an acidified solution of hydrogen sulfide. If the concentration of H_2S is maintained at 1.0 M, what must the pH of the solution be reduced to in order for the solution to allow an aqueous Fe^{2+} concentration of 0.10 M?