Chem 163 – K. Marr

[Keep for Reference]

17 • Chemical Equilibria

BLUFFER’S GUIDE

1. aA + bB + . . . ⇋ rR + sS + . . .
 \[K_c = \frac{[R]^r [S]^s \cdots}{[A]^a [B]^b \cdots} \]
 and for gases:
 \[K_p = \frac{(P_R)^r (P_S)^s \cdots}{(P_A)^a (P_B)^b} \]

2. K > 1 **products** favored
 K < 1 **reactants** favored

3. Excluded: solids; pure liquids; water (in aqueous solutions) because their []’s do not change.

4. Convert from \(K_c \) to \(K_p \)
 \[K_p = K_c (RT)^{\Delta n} \]
 where \(\Delta n \) = moles of gaseous product – moles of gaseous reactant.

5. Typical question: Given \(K_c \) and the starting concentrations of reactants, find concentrations of products at equilibrium.
 Example: \(K_c \) for acetic acid = 1.8 x 10^{-5}
 What is the equilibrium concentration of \([H^+]\) in a 0.100 M solution of the acid?

6. Equilibrium constant for a **reverse** reaction = \(\frac{1}{K} \), the value of the forward reaction.

7. Equilibrium constant for a doubled reaction = \(K^2 \).

8. When using Hess’s Law:
 \[K_{overall} = K_1 \times K_2 \]

10. If **out** of equilibrium: Calculate the reaction quotient (Q) similar to the way an equilibrium constant would be found. If:
 - Q < K \text{ forward} reaction occurs to reach equilibrium
 - Q > K \text{ reverse} reaction occurs to reach equilibrium

11. Problem solving:
 - Set up problems using the “magic box” (or ICE box) C = “change” or \(\Delta \).
 - Example: A ⇋ B + C
 \[
 \begin{array}{ccc}
 \text{initial} & 5.0 \text{ M} & 0 \text{ M} & 0 \text{ M} \\
 \text{equilibrium} & & & \\
 \Delta & & & \\
 \end{array}
 \]
 “\(\Delta \)” row only follows the stoichiometry of the equation.
 - Learn when to make an approximation (needed for multiple choice questions!)
 5% rule usually works when value of K is 10^3 smaller than value of known concentrations.
 Example: A ⇋ B + C
 \[K = 3.0 \times 10^{-6} \]
 if \([A] = 5.0\text{M} \) initially; find \([C] \) at equilibrium.
 - If greater than 5% use the quadratic equation: \(ax^2 + bx + c = 0 \)
 \[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]
 - Another easy to solve situation is the perfect squares situation.
 Example: \(H_2 + I_2 ⇋ 2HI \) \(K = 3.5 \times 10^2 \)
 Calculate \([HI]\) when \([H_2] = [I_2] = 0.10 \text{ M} \)

Based on a handout by William Bond, Snohomish HS