17•Chemical Equilibria

BLUFFER'S GUIDE

1. $\mathrm{aA}+\mathrm{bB}+\ldots \rightleftharpoons \mathrm{rR}+\mathrm{sS}+\ldots$.
$K_{c}=\frac{[R]^{r}[S]^{s} \cdots}{[A]^{a}[B]^{b} \cdots}$
and for gases:
$\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{R}}\right)^{r}\left(\mathrm{P}_{\mathrm{S}}\right)^{s}}{\left(\mathrm{P}_{\mathrm{A}}\right)^{\mathrm{a}}\left(\mathrm{P}_{\mathrm{B}}\right)^{\mathrm{b}}}$
2. $\mathrm{K}>1$ products favored
$K<1$ reactants favored
3. Excluded: solids; pure liquids; water (in aqueous solutions) because their []'s do not change.
4. Convert from K_{c} to K_{p}
$K_{p}=K_{C}(R T)^{\Delta n}$
where $\Delta \mathrm{n}=$ moles of gaseous product moles of gaseous reactant.
5. Typical question: Given K_{C} and the starting concentrations of reactants, find concentrations of products at equilibrium.

Example: K_{C} for acetic acid $=1.8 \times 10^{-5}$. What is the equilibrium concentration of $\left[\mathrm{H}^{+}\right]$in a 0.100 M solution of the acid?
6. Equilibrium constant for a reverse reaction $=1 / \mathrm{K}$ the value of the forward reaction.
7. Equilibrium constant for a doubled reaction $=K^{2}$.
8. When using Hess's Law:

$$
\mathrm{K}_{\text {overall }}=\mathrm{K}_{1} \times \mathrm{K}_{2}
$$

9. Le Châtelier's Principle: effect of changes in concentration, pressure, \& temperature. Equilibrium always "shifts" away from what you add. "Stress" means too much or too little: chemical, heat, or room.
10. If out of equilibrium: Calculate the reaction quotient (Q) similar to the way an equilibrium constant would be found. If:
$\mathrm{Q}<\mathrm{K}$ forward reaction occurs to reach equilibrium
$\mathrm{Q}>\mathrm{K}$ reverse reaction occurs to reach equilibrium
11. Problem solving:

- Set up problems using the "magic box" (or ICE box) $\mathrm{C}=$ "change" or Δ.

Example: $\mathrm{A} \rightleftharpoons \mathrm{B}+\mathrm{C}$

	\mathbf{A}	\mathbf{B}	\mathbf{C}
initial	5.0 M	0 M	0 M
Δ			
equilibrium			

" Δ " row only follows the stoichiometry of the equation.

- Learn when to make an approximation (needed for multiple choice questions!) 5% rule usually works when value of K is 10^{3} smaller than value of known concentrations.

Example: $\mathrm{A} \rightleftharpoons \mathrm{B}+\mathrm{C}$
$\mathrm{K}=3.0 \times 10^{-6}$
if $[\mathrm{A}]=5.0 \mathrm{M}$ initially; find $[\mathrm{C}]$ at equilibrium.

- If greater than 5% use the quadratic equation: (not usual on the ACS exam)

$$
\begin{gathered}
a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

- Another easy to solve situation is the perfect squares situation.
Example: $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI} \mathrm{K}=3.5 \times 10^{2}$ Calculate $[\mathrm{HI}]$ when $\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=0.10 \mathrm{M}$

