## ANNOTATEDANSWERS

| 1. | A Besides H and the Noble Gases, only $\mathrm{O}, \mathrm{F}$, and Cl are gases....memorize them |
| :---: | :---: |
| 2. | D $\mathrm{SO}_{2} \mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ are combustion products. $\mathrm{NO}_{2}$ is a component of smog because unreactive $\mathrm{N}_{2}$ and $\mathrm{O}_{2}$ can combine under the high temperature and pressure conditions of a car engine. $\mathrm{SO}_{2}$ is formed from burning coal that may have small amounts of sulfur impurities. |
| 3. | C Sn, a metal is the best conductor. Ge and Te are semi-metals and Se is a non-metal. |
| 4. | C Eliminate A \& D because you should not add water to acid. Eliminate B because the volumes will not necessarily be additive. 10 mL acid +90 mL acid do not necessarily add up to 100 mL solution. |
| 5. | C The hottest part of the flame is just above the "inner cone". |
| 6. | D Wafting is the proper technique. |
| 7. | A The molecular formula, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$ or $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$, is not reducible to an empirical formula. |
| 8. | D mass $=$ volume x density $\ldots . .\left(\mathrm{x} \mathrm{cm}^{3}\right)\left(.66 \mathrm{~g} / \mathrm{cm}^{3}\right)=\left(80 \mathrm{~cm}_{3}\right)\left(1.59 \mathrm{~g} / \mathrm{cm}^{3}\right) \mathrm{x}=193 \mathrm{~cm}^{3}$ |
| 9. | $\text { A } 0.10 \mathrm{~g} \mathrm{x} \frac{1 \mathrm{~mole}}{249.7 \mathrm{~g}} \times \frac{5 \mathrm{~mole}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}} \times \frac{6.02 \times 10^{23} \text { molecules } \mathrm{H}_{2} \mathrm{O}}{1 \text { mole } \mathrm{H}_{2} \mathrm{O}}=1.2 \times 10^{21} \text { molecules } \mathrm{H}_{2} \mathrm{O}$ |
| 10. | C $\mathrm{C}_{2} \mathrm{H}_{2}+5 / 2 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \therefore$ Ratio $\mathrm{O}_{2}: \mathrm{C}_{2} \mathrm{H}_{2}=5 / 2: 1$ or 5:2 |
| 11. | B $1.00 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mole} \mathrm{Mg}(\mathrm{OH})_{2}}{58.33 \mathrm{~g} \mathrm{Mg}(\mathrm{OH})_{2}} \times \frac{2 \text { mole } \mathrm{HCl}}{1 \text { mole } \mathrm{Mg}(\mathrm{OH})_{2}}=0.0343$ moles HCl <br> Note: Stomach acid is $\mathrm{HCl} ; 2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{MgCl}_{2}$ |
| 12. | D $\mathrm{x}=.3047 \mathrm{~mL} \mathrm{NaOH} \quad \mathrm{V}_{\mathrm{a}} \underline{\mathrm{M}}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}} \underline{\mathrm{M}}_{\mathrm{b}} \quad(25 \mathrm{~mL})(0.2100 \underline{\mathrm{M}})=(17.23 \mathrm{~mL}) \mathrm{x}$ Note: since the acid is diprotic, the $\underline{\mathrm{M}}_{\mathrm{a}}=2\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=2(0.1050 \mathrm{M})=0.2100 \mathrm{M}$ |
| 13. | C $44 \mathrm{~g} / \mathrm{mol}$ Mass $\mathrm{O}_{2}=125.10-124.46 \mathrm{~g}=0.64 \mathrm{~g}$ Mass Unknown $=125.34-124.46=0.88 \mathrm{~g}$ Note: equal volumes of gas (at the same temp and pressure) contain equal numbers of moles $\therefore$ Ratio of masses $=$ ratio of molar masses $\frac{.64}{.88}=\frac{32 \mathrm{~g} \mathrm{O}_{2}}{x}$ Remember that oxygen is diatomic, $\mathrm{O}_{2}$. |
| 14. | C Both $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{CO}_{2}$ have a mass of $44 \mathrm{~g} / \mathrm{mol}$. Rate of diffusion at $25^{\circ} \mathrm{C}$ depends on mass. |
| 15. | A Solid only. Memorize the phases of the three regions of the phase diagram. |
| 16. | A Slowing down the particles and pushing them closer together will allow IMF's to condense the gas. |
| 17. | A Highest vapor pressure = lowest IMF. Eliminate (B) and (D) because they have hydrogen bonding. Smaller nonpolar molecules have weaker London forces than larger nonpolar molecules. |
| 18. | D $\mathrm{SiO}_{2}$ is a network solid held together with strong covalent bonds while the other oxides are molecules held to each other with London Forces and Hydrogen Bonds. Highest MP = Strongest IMF |
| 19. | A $\Delta \mathrm{H}^{\circ} \mathrm{f}$ implies formation of a compound from its elements as they exist at $25^{\circ} \mathrm{C}$. |
| 20. | B $\Delta \mathrm{H}$ is always positive for endothermic reactions. $\Delta \mathrm{G}$ (Gibbs Free Energy) can be + or - for an endothermic reaction, depending on $\Delta \mathrm{S}$. |
| 21. | D A bomb calorimeter consists of a metal chamber that cannot change volume. |
| 22. | A $+124 \mathrm{~kJ} \quad \Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{f}}$ of products $-\Delta \mathrm{H}_{\mathrm{f}}$ of reactants $\quad 3(-54 \mathrm{~kJ})-2(-143 \mathrm{~kJ})=+124 \mathrm{~kJ}$ |
| 23. | B Heat lost by water $=$ heat gained by ice as it melts and warms to $5^{\circ} \mathrm{C}(\mathrm{q}=\mathrm{mC} \Delta \mathrm{T})$ $(200 \mathrm{~g})\left(4.18 \mathrm{Jg}^{-1 \circ} \mathrm{C}^{-1}\right)\left(20.00^{\circ} \mathrm{C}\right)=\mathrm{x}(340 \mathrm{Jg}-1)+\mathrm{x}\left(4.18 \mathrm{Jg}^{-1 \circ} \mathrm{C}^{-1}\right)\left(5.00^{\circ} \mathrm{C}\right)$ $16720 \mathrm{~J}=340 \mathrm{x}+20.9 \mathrm{x}=360.9 \mathrm{x} \quad \mathrm{x}=16720 / 360.9=\mathbf{4 6 . 3} \mathbf{g}$ |
| 24. | A changing from liquid to gas is an increase in entropy ( $+\Delta$ S) |
| 25. | D remember, this is called the Method of Initial Rates |
| 26. | C Rate Law is: Rate $=\mathrm{k}[\mathrm{A}]^{2}$ Solve for k's units using $\mathrm{mol} \cdot \mathrm{L}^{-1}$ for [A] and the given units for Rate. |
| 27. | A Since B is not in the rate law, it is not involved in the rate determining step (the slow step) and increasing B's concentration will only speed up a faster step... no change to the overall rate. |
| 28. | C First-order reactions have a constant half-life. |


| 29. | C The rate of both exothermic and endothermic reactions increase with an increase in temperature. Students often confuse Rates with whether the reaction will shift to the right or to the left (Equilibrium) |
| :---: | :---: |
| 30. | B The energy barrier will change. This will change \#1 and \#3. |
| 31. | C This is just the definition of what is equal at equilibrium. Note the incorrect answers well. |
| 32. | D The concentrations of solids cannot change and are not included in the equilibrium expression. |
| 33. | B $\mathrm{K}_{\mathrm{a}} \cdot \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$ (for a conjugate acid-base pair), so $\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{1 \times 10^{-14}}{3.0 \times 10^{-4}}=3.3 \times 10^{-11}$ |
| 34. | A Adding a little strong base will make the solution a little more basic, pH increases. |
| 35. | B When a strong acid \& weak base mix, the resulting salt (the conjugate acid of a weak base) makes the solution somewhat acidic. $\mathrm{pH}=5$. |
| 36. | D AgCl is a $1: 1$ compound, $\therefore \mathrm{K}_{\mathrm{sp}}=\mathrm{s}^{2}$, where solubility, $\mathrm{s}=$ molarity of the saturated solution $=$ moles $\left(1.9 \times 10^{-4} \mathrm{~g} / 143.4 \mathrm{~g} \cdot \mathrm{~mol}^{-1}\right) /$ Liters $(.100 \mathrm{~L})=1.32 \times 10^{-5} \underline{\mathrm{M}} \quad \mathrm{K}_{\text {sp }}=\mathrm{s}^{2}=\left(1.32 \times 10^{-5}\right)^{2}$ |
| 37. | B $\mathrm{Fe}^{2+}+6\left(\mathrm{CN}^{-}\right)=$charge of $4-; \mathrm{S}$ is $+6, \mathrm{~N}$ is $+3, \mathrm{I}$ don't know what Ni is... must be +4 ! |
| 38. | B Cr changes from +3 to $+6 \ldots$ this is oxidation. <br> $V$ in (A) remains $+5 ; \quad S$ in (C) remains $+6 ; \quad N$ in (D) is reduced from +5 to +3 |
| 39. | D This is balancing a redox reaction... I used the half-reaction method: $\begin{aligned} 3 \mathrm{Sn}^{2+} & \rightarrow 3 \mathrm{Sn}^{4+}+6 \mathrm{e}^{-} \\ 6 \mathrm{e}^{-}+2 \mathrm{NO}_{3}^{-}+8 \mathrm{H}^{+} & \rightarrow 2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ |
| 40. | B Red Cat; An Ox; always! |
| 41. | A Implied Info: The standard reduction: $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g}) \mathrm{E}^{\circ}=0.00$ volts $\mathrm{Ga}^{3+}$ is not being reduced in this case, it is being oxidized, so it's $\mathrm{E}^{\circ}$ must be lower than 0.00 volts. Since the difference is +0.54 volts, $0.00-\mathrm{x}=+0.54 \quad \therefore \mathrm{E}^{\circ}$ for $\mathrm{Ga}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Ga}^{\circ}$ must be -0.54 volts |
| 42. | D Molar mass is not involved. It would be if the question asked for mass of metal deposited. |
| 43. | D Four lines, Red, and then closer to each other are Blue-Green, Blue-Violet, and Violet. This picture goes from high energy (violet) to lower energy (red) ) 400 600 |
| 44. | B From their positions on the periodic table, you can tell the electron configurations: Ge $\left(4 s^{2} 4 p^{2}\right)=2$ unpaired; $\operatorname{As}\left(4 s^{2} 4 p^{3}\right)=3$ unpaired; $\operatorname{Se}\left(4 s^{2} 4 p^{4}\right)=2$ unpaired; $\operatorname{Br}\left(4 s^{2} 4 p^{5}\right)=1$ unpaired |
| 45. | D The fact that it has 18 electrons makes it isoelectronic with Ar. (The ion would be $\mathrm{Ca}^{2+}$ ) |
| 46. | B K, Atoms get larger down a family and to the left of a period. Lowest, most left atom is the answer. |
| 47. | D $\mathrm{n}=3$ means three subshells: $3 \mathrm{~s}, 3 \mathrm{p}$, and 3d; a total of 9 orbitals, and $\therefore 18$ electrons. |
| 48. | A LeO GeR; reducing ability means ability to get oxidized, donate electrons and reduce other atoms. As you move across the periodic table, there are more protons in the nucleus and the atom is better able to attract electrons, but less able to donate electrons. The reducing ability decreases. |
| 49. | A Remember, acids are covalently bonded molecules that only form ions when dissolved in water. |
| 50. | D $\mathrm{P}=5, \mathrm{O}=6$, valence electrons in $\mathrm{P} 2 \mathrm{O} 74-=2(5)+7(6)+4$ from somewhere else $=56 \mathrm{e}-$ |
| 51. | A $\mathrm{BF}_{3}$ is trigonal planar with a bond angle of $120^{\circ}$. The other three are based on tetrahedral ( $109.5^{\circ}$ ). |
| 52. | C ANY triple bond is 1 sigma and 2 pi bonds. |
| 53. | C London dispersion forces hold nonpolar molecules to each other. The fact that the larger atoms have larger London dispersion forces is due to the larger and $\therefore$ more polarizable electron cloud. |
| 54. | $\mathbf{B}$ bent $\mathrm{SO}_{2}$, you gotta do their electron dots (unless you have them memorized, like I do). |
| 55. | A butane means four carbons and all single bonds. $\mathrm{C}_{4} \mathrm{H}_{10}$ |
| 56. | D 1,1-dichoro..., 2,2-dichoro...,1,2-dichoro...,1,3-dichoro... |
| 57. | B $\mathrm{sp}^{2}$, carboxyl group as in carboxylic acid. Steric number $=3$ |

58. $\quad$ A ester formation... we made wintergreen in class.
59. D also called polytetrafluoroethylene
60. D enzymes are biochemical catalysts
