ANNOTATED ANSWERS

 D acid + carbonate → CO₂(g) Know the gases that form on your "Sture 2. B I₂(s) sublimes. Notice bottle of I₂(s) ≒ I₂(g) in classroom. Purple value 3. A A mixture melts at a lower temperature (and boils at a higher temperature) 		
- \ / - \ \ / - \ \ \ \ \ \ \ \ \ \ \ \	anor	
	A A mixture melts at a lower temperature (and boils at a higher temperature) colligative properties	
A You can make a barometer out of water, but it will need to be 33 feet tall!		
 4. A You can make a barometer out of water, but it will need to be 33 fee 5. B This is part of a series of labs called "qualitative analysis". Just rem 		
6. D Heat the top of the liquid so if a bubble forms, it will not push all of		
1 1		
7. C 1 molecule $H_2O \times \frac{1 \text{ mole } H_2O}{6.02 \times 10^{23} \text{ molecules}} \times \frac{18.02 \text{ g H}_2O}{1 \text{ mole } H_2O} = 3 \times 10^{-23}$	g (no calculator needed)	
8. D Balance equation: $N_2 + 2O_2 \rightarrow 2 NO_2$ This is a limiting reactant.	N ₂ is L.R. making 8 NO ₂ 's.	
9. C Calculate mass of FeS that formed the H₂S gas. ♥ is 1:1 FeS:H₂S		
448 mL H ₂ S x $\frac{1 \text{ L}}{1000 \text{ mL}}$ x $\frac{1 \text{ mol H}_2\text{S}}{22.4 \text{ L}}$ x $\frac{1 \text{ mol FeS}}{1 \text{ mol H}_2\text{S}}$ x $\frac{87.92 \text{ g FeS}}{1 \text{ mol FeS}}$ = 1.76 g		
10. D If 50/50, the atomic mass would be 204.0. Must be a little <i>more</i> Ti-2	205 \ 70.0% (no calc needed)	
11. C This is a limiting reactant problem. Work it out twice and take the s		
$15.5 \text{ g N}_2\text{O}_4 \text{ x} \frac{1 \text{ mol N}_2\text{O}_4}{92.0 \text{ g N}_2\text{O}_4} \text{ x} \frac{6 \text{ mol NO}}{2 \text{ mol N}_2\text{O}_4} \text{ x} \frac{30.0 \text{ g NO}}{1 \text{ mol NO}} = \mathbf{15.16 \text{ g NO}}$		
$4.68 \text{ g N}_{2}\text{H}_{4} \times \frac{1 \text{ mol N}_{2}\text{H}_{4}}{32.0 \text{ g N}_{2}\text{H}_{4}} \times \frac{6 \text{ mol NO}}{1 \text{ mol N}_{2}\text{O}_{4}} \times \frac{30.0 \text{ g NO}}{1 \text{ mol NO}} = 26 \text{ g NO}$		
12. A Balanced equation: $2 \text{ KOH} + \text{H}_2\text{SO}_4 \rightarrow 2 \text{ H}_2\text{O} + \text{K}_2\text{SO}_4$ \forall is	2:1 KOH:H ₂ SO ₄	
$25.0 \text{ mL } \times \frac{0.145 \text{ mol KOH}}{1000 \text{ mL KOH}} \times \frac{1 \text{ mol H}_2 \text{SO}_4}{2 \text{ mol KOH}} \times \frac{1000 \text{ mL}}{0.108 \text{ mol H}_2 \text{SO}_4} = 16.78$	3 mL H ₂ SO ₄	
13. D lightest particle (H_2) is the fastest. " $< H_2$ " is enough to tell you the a		
A molar mass = $\frac{\text{grams}}{\text{moles}}$ The mass is 1052.4 g = 1050.0 g = 2.4 g. Cal	lculate the moles.	
$P = 800 \text{ mmHg x } \frac{1 \text{ atm}}{760 \text{ mmHg}} = 1.05 \text{ atm} T = 273 + 25.0 = 298 \text{ K}$		
$PV = nRT$: $n = \frac{PV}{RT} = \frac{(1.05 \text{ atm})(2.0 \text{ L})}{(0.0821 \frac{\text{L-atm}}{\text{mol·K}})(298 \text{ K})} = 0.0860 \text{ mol}$ molar mass	$ss = \frac{2.4 \text{ g}}{0.086 \text{ mol}} = 27.9 \text{ g/mol}$	
15. B The pressure inside the tube (750 mmHg) is caused by N_2 , O_2 , & H_2		
The N ₂ & O ₂ are causing (750-22) = 728 mmHg. Since $\frac{2}{3}$ of the gas is 0	O_2 , $P_{O_2} = \frac{2}{3}(728) = 485$ mmHg.	
B "does not conduct" eliminates the metal, Pt. "insoluble in water" eli	9	
MP eliminates the molecular substance, $C_{10}H_{22}$. They are describing a		
17. A Vapor pressure certainly increases with increased temperature becau	1	
Surface tension (due to IMF's) would be weakened if the particles had		
18. D When the line between solid & liquid has a positive slope, you can determine the line between solid & liquid has a positive slope, you can determine the line between solid & liquid has a positive slope, you can determine the line between solid & liquid has a positive slope, you can determine the line between solid & liquid has a positive slope, you can determine the line between solid & liquid has a positive slope, you can determine the line between solid & liquid has a positive slope.		
dense solid. [Note: Water is different (negative slope) compressing a		
19. D Definition of ΔH_f 1 mole of $B_5H_9(g)$ is formed from its elements u	under standard conditions.	
20. D Hess's Law. The equation for vaporization is: $H_2O(l) \rightarrow H_2O(g)$	$\Delta H = + 44.0 \text{ kJ/mol}$	
To combine with the given equation, multiply by 3 and reverse the equation are the equation and the second	ation. So, $\Delta H = -132.0 \text{ kJ}$	
Adding the enthalpies give you: $-1427.7 + (-132.0) = -1559.7 \text{ kJ}$		

21.	A Calorimetry using equation: $q = mc\Delta T$; heat lost by ring = heat gained by water; $x = final temp$
	$(3.81 \text{ g})(0.129)(84-x) = (50 \text{ g})(4.18)(x-22.1)$ Solve for x. $\mathbf{x} = 22.2^{\circ} \mathbf{C}$
	[Note: Water has a large specific heat compared to gold, so very little heating is done by the hot ring!]
22.	B Notice this is at STP. $11.2 L = .50$ moles, so the answer is $\frac{1}{2}$ of $241.8 \text{ kJ/mol} = 120.6 \text{ kJ}$
23.	B liquid \rightarrow gas is the greatest increase in entropy of the given examples.
	"A" and "D" are decreases in entropy. "C" has very little change in entropy.
24.	A $\Delta H -$; $\Delta S +$ (liquid \rightarrow gases); so this will be product-favored at all temperatures. Both driving forces are driving this reaction.
25.	B "A" and "C" increase rate. "D" would decrease the rate. "B" would not affect the rate, but it would
	drive the equilibrium toward the products. Don't confuse Rates (kinetics) with the equilibrium state.
26.	C Use \checkmark of the problem. 3.0 mol·L·s ⁻¹ N ₂ x $\frac{3 \text{ mol O}_2}{2 \text{ mol N}_2} = 4.5 \text{ mol·L·s}^{-1} \text{ O}_2$
27.	C Rate = $k[A]^2$; $\therefore k = \frac{Rate}{[A]^2} = \frac{\text{mol} \cdot L^{-1} \cdot s^{-1}}{\text{mol}^2 \cdot L^{-2}} = \text{mof}^1 \cdot L1 \cdot s^{-1} = \mathbf{L} \cdot \mathbf{mol}^{-1} \cdot \mathbf{s}^{-1}$
28.	D Changing [OH $^-$] has no effect \therefore zero order. halving [(CH $_3$) $_3$ CBr] halves the rate \therefore 1 st order.
29.	D The activation energy barrier is lowered because a alternative mechanism is used.
30.	A This is an equation we used in the Kinetics chapter (3^{rd} equation given on Page 2 of this exam) and we also solved this problem graphically by plotting ln k vs. $1/T$; slope = $-E_a/R$
31.	B Heat appears as a product. Look for changes that shift the equilibrium to the right. "I" shifts to the
	left and "III" doesn't change the equilibrium state.
32.	B leave out the solids. Products over reactants.
33.	B HNO ₃ is a strong acid :: $[H^+] = [HNO_3]$ pH = $-\log(.0015) = 2.82$
34.	B Shortcut: $[H^+] = \sqrt{[HA] \cdot K_a}$; $x^2 = [HA] \cdot K_a$; $[HA] = \frac{x^2}{K_a} = \frac{(2.3 \times 10^{-3})^2}{1.7 \times 10^{-4}} = 3.1 \times 10^{-2}$
35.	C First, realize that this is a buffer . IF [HA] = [A ⁻], then [H ⁺] = $K_a = 3.0 \times 10^{-6}$.
	However, [HA] > [A ⁻] (more of the acid), \therefore [H ⁺] is a little larger than 3.0 x 10 ⁻⁶ . Ans: 6.0 x 10⁻⁶
36.	D All compounds are 1:1 \therefore K _{sp} \propto solubility [" \sim " means "is proportional to"]; smallest to largest K _{sp}
37.	C Oxidation means an increase in oxidation #. $Cr^{3+} \rightarrow CrO_4^{2-}$ is an <i>increase</i> from (+3) \rightarrow (+6)
38.	B The "reducing agent" gets oxidized. $2Br^- \rightarrow Br_2$ is an <i>increase</i> from (-1) to (0)
39.	D The two half-reactions are: $10 \text{ e}^- + 12 \text{ H}^+ + 2 \text{ ClO}_3^- \rightarrow \text{Cl}_2 + 6 \text{ H}_2\text{O}$
	$2 \text{ Br}^- \rightarrow \text{Br}_2 + 2 \text{ e}^-$ [to cancel the e ⁻ 's, multiply by 5]
	\therefore ratio of Br ⁻ /ClO ₃ ⁻ is 10/2 or 5/1
40.	A First, notice that the E° chart is from <i>most negative to most positive! The reverse of what is usual.</i>
	$E^{\circ}_{cell} = E^{\circ}_{reduction} - E^{\circ}_{oxidation} = (336 \text{ V}) - (763 \text{ V}) = + \textbf{0.427 V}.$
	[Note: when I write E° _{oxidation} , I mean the <i>reduction potential</i> of the reaction that undergoes oxidation, not the "oxidation potential".]
41.	A Instead of "upper left, lower right", we need to do "upper right, lower left". Only "I" fits.
42.	C If 3 moles of e ⁻ 's move through the circuit, we will get 3 mol Ag°, 1.5 mol Cu°, & 1 mol Au°.
43.	C If n =3, l cannot be 3 it must be 2 or 1 or 0.
44.	B Locate Fe (Z=26) on the periodic table. From its position in the "d-block" it is $3d^6$. $\otimes \emptyset \emptyset \emptyset \emptyset$
45.	D Remember the Hydrogen's line spectrum. The wavelengths of light in the spectrum gave clues of the differences in the energy levels of H's electron. (red, blue-green, blue-violet, & violet)
46.	A Cations (+ ions) lose e ⁻ 's and therefore have less e ⁻ - e ⁻ repulsion. Anions gain e ⁻ 's and have more repulsion.
47.	D These elements are arranged: Li Be B Na The largest atoms are lower left, smallest upper right
48.	B Recall that beta is ${}^0_{-1}$ e. Example: ${}^{14}_{6}\text{C} \rightarrow {}^0_{-1}\text{e} + {}^{14}_{7}\text{N}$

49.	D Practice drawing these! S has 6 valence electrons, 4 are used to bond the F's. That leave one pair.		
.,.	Steric number is 5, arrangement of the electron pairs is trigonal bipyramidal, shape is see-saw.		
50.	C Practice drawing these! Recall that CO₂ is linear (O=C=O) and BF₃ is trigonal planar () and		
	CS ₂ looks like CO ₂ (S=C=S)		
51.	A "I" is a resonance structure. "II" is not. You can't switch the position of atoms, only the electrons.		
52.	B Draw CS ₂ . Remember to put the two lone pairs on each S.		
53.	D You should remember that of the seven diatomic elements, N ₂ has a triple bond, O ₂ has a double		
	bond, and all the rest have single bonds. Triple is stronger than double, double is stronger than single.		
54.	A Practice drawing these C_2H_2 is H-C=C-H; a single is a sigma (σ), a triple is a sigma & two pi's (π)		
55.	D Review your functional group on the "Stuff I Am Supposed To Know for AP" sheet.		
	1-butanol is C-C-C-O and diethyl ether is C-C-O-C-C		
56.	B Review your functional groups. "A" is ether, "C" is carboxylic acid, "D" is ester.		
57.	C You can place two Br's on a benzene ring three different ways ortho-, meta-, and para-		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	V R Y		
50	Ř		
58.	D Look for the longest chain that contains the double bond. It is five carbons long ∴ " pentene "		
59.	D All three are SN=3, sp ² hybridization.		
60.	If these were oxygen or nitrogen atoms, don't forget to draw in the lone pairs. B Proteins are long chains (polymers) of amino acids. Their properties depend on their shape. This		
00.	shape comes from the order of the amino acids and the way the protein "folds up" as it is formed.		
	Hydrogen bonding plays a huge role in how a protein folds up to give it a shape. When a protein is		
	heated (as when you cook an egg), the clear protein molecules in the egg white unfold (denature) and		
	stick together in a new way as they cool.		
	In cooking, this is a good thing. If it happens to proteins in your bodies (like enzymes or hemoglobin)		
	it is a very bad thing. Changes in temperature and changes in pH can cause proteins to denature.		
	Denaturation		
	5501501		
	68 280 (1) 1 1		
	Normal protein Denatured protein		

Renaturation