Rotational Kinematics Lab

Physics 202





This lab uses the PASCO rotational motion analyzers and the Rotary Motion software on the Mac computers (it is very much like MacMotion, but it measures rotation instead).  There are lots of jobs available within each lab team, but if you are new to this class and have not used the computers with the MacMotion software, you should try to be the person operating the computer for much (if not most) of the lab.

SETTING UP:
   
You will need a Mac computer with a ULI interface box and a PASCO rotational motion analyzer attached to Port 2 of the interface.  If the Rotary Motion software is not up and running, turn on the computer, turn on the interface, and sta
rt the software.  You should see
 a 
screen allowing you to begin making measurements.

Because “rotational motion analyzer” takes too long to say (much less type), that piece of equipment will be referred to by the name “analyzer” throughout this lab.
  


NOTICE:  
These analyzers can be very sensitive to small changes in angular position. 
T
o make your graphs more readable, you may want to go to 
the menu for  
Collect
…  Data
…  Averaging
…
 and choose to average something like 9 points for velocity and accel
eration.


Units and measurements.

Click “Start” on the computer screen and gently turn the pulley wheel on the analyzer.  Rotate the wheel one full revolution.  Now rotate it a couple of revolutions in the other direction.  Can you see the motion on the computer screen?  If not, why not?  

Start the analyzer again and give the wheel a spin in one direction, allowing friction to bring it to a stop.  If there is time left on your computer screen, give the wheel a couple of spins in the other direction.  Adjust the axes on the screen so that you can clearly see the plot of this motion.

What units are used by the computer to measure and plot the rotations on the computer screen?   	The default setting is for angles to be measured in revolutions.  Start the analyzer again.  Rotate the pulleys one full revolution in one direction and then three full revolutions in the other direction.  Adjust your axes so that you can see the plot clearly.

Look under the “display” menu for the control for “units” (which should be at the bottom of the list).  Change the units to degrees.  How did this effect the plot on the screen?  Change the units to radians.  What effect did this have?

Find the rubber “O” ring that fits around the largest pulley.  Place this on the pulley to transform it into a “tire” on a wheel.  Measure the diameter of this wheel.  (It should be about 5.5 cm).   Go back to “Units” on the display menu and choose “cm” as your unit.  Make sure that the wheel diameter listed in the box on the screen corresponds to the diameter of the wheel you are using.

Start the analyzer and rotate the pulley through one full revolution.  What is the relationship between this rotation and the display on the screen?

Find a meter stick, start the analyzer and roll the pulley wheel along the meter stick or a table top for a distance of one full meter.  What does the screen say about the motion of the wheel?

Keeping the same data you used in part 2, change the units back to radians.  What is the relationship between the plot in radians and the plot in cm?

Keeping the same data, change the display from angular position to angular velocity.  Choose one point in time and record the time and angular velocity.  Change the units back to cm, and find the linear velocity at that same time.  What is the relationship between the two “velocities”?

Repeat step 4 looking at your acceleration plots. What is the relationship between the two “accelerations”? Remember, acceleration plots are “noisier” than velocity plots (which are noisier than position).  If you can’t read the acceleration, increase “data averaging” under the “collect” menu.

�

Rotational kinematics and the Fundamental Theorem of Calculus:

Change the units of measurement back to radians (you can leave the “O” ring on the pulley for now if you want).  Quickly rotate the pulley in one direction for a few revolutions, then slowly rotate the pulley in the other direction until you get it back to its original position.  Make a quick sketch of your angular position plot.



Don
’
t change anything 
and leave the plot above 
on the computer.  
Keep the display of 
angular position versus time
 on the screen.  
Based on
 
this
 plot
, what would you expect an angular velocity plot to look like?  
Make a sketch.



It may be hard to estimate the sizes of things on the velocity plot above, so let the computer help you.  Click on Analyze… Analyze data A…  then click on Tangent on the same menu.  Moving the cursor around the screen should produce a tangent line at times corresponding to the position of the cursor.  The slope of the tangent line should be printed above the graph.  Choose a few points to measure a tangent to make your plot above more accurate.



Finally, change the display
 
of
 the computer
 to angular velocity.  How did you do?

Now looking at the velocity display, how could you analyze this plot to find information about the angular position display?  Discuss with your lab partners what you want to evaluate…  (Pause)   … Then evaluate it. 
 
(Notice the “Integral” option just below the “Ta
ngent” item on the Analyze menu!
)



Figure out how to use the integral button and carefully measure the integral of 
something
 on your velocity plot.  T
h
ink 
carefully.  Record the value of the integral and explain in words what this 
integral 
means
 in terms of 
motion of the w
heel
.
  



Flip back to the angular
 position plot
 and look at the same region that you integrated above
.  How did you do?

Go back to the angular velocity display, click Start, and move the pulley to get a velocity plot that looks something like this:

�

Choose several points in time and use the “Tangent” function to find the slope of your velocity plot
 and label them on
 this
 plot
.  Switch the display to acceleration, and compare these with the angular acceleration values at those same times.


�
Now
 
keep 
look
ing
 at the acceleration plot.
  U
se the “Integral” function
 
and carefully measure the integral of 
something
 on your 
accelera
tion
 plot.  T
h
ink 
carefully.  Record the value of the integral and explain in words what this integral 
means
 in terms of 
motion of the w
heel.
  



Flip
 
back to a velocity plot
 and look at the same region that you integrated above
.  How did you do?


Flip from position to velocity to acceleration and back again.  Look for 
any 
“
landmarks
”
 
on one plot 
(either position, velocity, or acceleration
) 
that might tell you
 about features of the other plots
 (t
hese 
landmarks 
include 
zeroes
, minima, and maxima
, and
 see if you can find others)
.  Check to see that the landmarks show
 up where you would expect them to be in terms of features of other plots.



Constant acceleration:



How do you suppose we could get the wheel on the motion analyzer to have a 
constant angular acceleration
?  (HINT:  We are going to keep the analyzer still here, we are not going to roll in along
 with the 
“
O
”
 ring.)  W
h
en 
do we often see constant linear acc
eleration in daily life?  How could we
 turn that into constant angular acceleration for the wheel?


Look closely at the pulley wheels.
  You will see that there are small holes where you can tie a thin string near the edge of
 the wheels.  Tie a string 
 a couple of meters long 
to one of the holes and wrap
 the excess around one of the pulleys.  Tie t
he other end to a 
dynamics cart.  
What will happen to the angular motion of the wheel as the dynamics cart moves away from t
he analyzer?



Predict the appearance of a plot of angular acceleration vs. time as 
the
 
cart rolls awa
y down a
n inclined plane.



�
Set the rot
ary motion sof
tware to
 display angular acceleration. 
S
e
t the 
time scale so that you are ready to collect data for about two seconds.  Let the 
cart roll down a gentle incline, unwrapping t
he string as it goes
, and
 s
tar
t the rotary motion analyzer
.
 
 
S
tart the software 
immediatel
y after
 the cart starts rolling since we want the cart to be in motion
 during the entire time the software is collecting data
.



D
o
es 
the appearance of the plot match your expectations?  If not, what are the differences and 
why?


Predict the appearance of 
a
 plot of angular velocity as a function of time
 for this same motion
.



Change the display on the computer screen
 to show 
angular velocity.  How
 closely does it match your pred
iction?  
Discuss any differences that you see.


Predict the appearance of 
a
 plot of angular 
position
 as a function of time
 for this same motion
.



Change the display on the computer screen
 to show 
angular 
position
.  How
 closely does it match your pred
iction?  
Discuss any differences that you see.



How similar is what you have just seen to what we saw for linear position, velocity, and acceleration using MacMotion
?  Using the symbol
 
(
 for angular accele
ration, 
(
 for angular velocity, and 
(
 for angular 
position
, can you write down equations of angular 
acceleration
, velocity, and 
position as a function of time in the case of constant angular acceleration?



�
The effect of inertia:

Go back to the angular velocity display, start the wheel spinning, and start the analyzer (you should not be touching the wheel once the analyzer is on, but instead let it spin on its own).  What happens?  Why?  What do you think the angular acceleration plot will look like?  Take a look.

Keep the data you just collected by saving it as “data B” (under the Data menu, “Data A -> Data B”).   Now add inertia to the system by attaching a plastic disk to one side of the analyzer.  (We have very high precision plastic electrical cover plates designed just for this purpose.)   Change the display back to angular velocity and repeat the steps in part A.  How does your new data (red lines) compare with the old data (green lines)?

Repeat the steps of part B  (when your new Data A is moved to Data B, the old Data B will be lost, but that’s okay).  Add a second plastic disk to the system to give it even more inertia.  Give it a spin and watch the angular velocity plot.  What do you notice?  What do you expect to see for angular acceleration?

What is causing the rotation to slow down in each of these cases?  Do you think the magnitude of this cause is different in the three cases?  What is different?  What do your results suggest about the relationship between inertia, angular acceleration, and …  hmm… what should we call the thing that causes rotation to slow down?

Accelerating “forces” Part One:

Keeping the two plastic disks on your analyzer, mount it on a stand so that the disks are free to rotate and a string with a weight attached can be wrapped around the pulleys.  Remove the rubber “O” ring from the largest pulley if you have not done so already.  Find a piece of string that you can wrap around the smallest pulley wheel (notice the notches in the wheel that can be used to anchor a string with a simple knot in it).  Wrap the string around the narrow pulley wheel several times and attach a small weight (10 g to 20 g) to the other end.

Set the display to angular position, start the analyzer, release the weight, and watch what happens.  Pay careful attention to when the weight is accelerating the pulley and set the display to that this region fills the screen (try the “Set All” button if you can find it!).  What can you tell from the angular position plot?

Look at the angular velocity and angular acceleration plots to verify your conclusions from part A.


Save your data as Data B, and then repeat the experiment with the same pulley and twice as much weight.  What do you notice?  Does this agree with your conclusions from Part III (above)?



Accelerating “forces” Part Two:

Keep the analyzer as it was set up in part IV.  If you still have your data you are in luck.  Simply move data A to data B.  If not, repeat the experiment with the larger amount of weight (which should be double the smaller amount of weight).  Again save your data as data B.

Repeat the experiment again with the smaller amount of weight from part IV, but wrapping the string around the medium sized pulley wheel.  How does this angular acceleration compare to the previous two?   Does this agree with your conclusions from part III?

Record the average angular acceleration values from above as your results for “medium sized pulley” and repeat the experiment two more times, once each with the largest and smallest pulley wheels, but always with the smaller amount of weight.  Record your results.



Measure the three pulleys wheels.  What is the a correlation between pulley size and angular acceleration?  



What is the correlation between applied force and angular acceleration?  

What is the correlation between inertia and angular acceleration?

Can you combine your answers to the previous three questions into a single relationship between force, distance, rotational inertia, and angular acceleration?


You should be able to write your result from part F in the form



“Angular accelerating force” = “rotational inertia” ( “angular acceleration” .



We usually call  “Angular accelerating force” by the name “torque.”  According to your results from part F, what is torque?
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