Useful Equations: Physics 222

FORCE and MOMENTUM:

Momentum: $\vec{p} = m\vec{v}$ (and \vec{p} is conserved in the absence of external forces)

$$2^{\text{nd}}$$
 law: $\sum \vec{F} = \frac{d\vec{p}}{dt}$ or $\sum \vec{F} = m\vec{a}$ (if mass is constant) 3^{rd} law: $\vec{F}_{AB} = -\vec{F}_{BA}$

Impulse: Impulse = $\int \vec{F} dt$ and $\int \Sigma \vec{F} dt = \Delta \vec{p}$

ENERGY: Kinetic Energy:
$$K = \frac{1}{2}mv^2$$
 $\left(1 \text{ J} = 1 \frac{kg m^2}{s^2}\right)$

Work: work =
$$\int \vec{F} \cdot d\vec{x} = \vec{F} \cdot \Delta \vec{x}$$
 (if force is constant)

Work-energy theorem: Net work = $\int (\Sigma \vec{F}) \cdot d\vec{x} = \Delta K$

Gravity:
$$\vec{F} = m\vec{g}$$
 (pointing down), $U = mgh$

Ideal Springs:
$$\vec{F} = -k\vec{x}$$
, $U = \frac{1}{2}kx^2$

CONSERVATIVE FORCES: Let
$$\vec{F}_U = F_{U,x} \hat{i} + F_{U,y} \hat{j} + F_{U,z} \hat{k}$$

Then
$$\vec{F}_{U,x} = -\frac{dU}{dx}$$
, $\vec{F}_{U,y} = -\frac{dU}{dy}$, and $\vec{F}_{U,z} = -\frac{dU}{dz}$, And $\Delta U = -\int \vec{F}_U \cdot d\vec{x}$

ROTATION:

If angular acceleration is constant,

$$\begin{split} \Delta \vec{\theta} &= \vec{\omega}_0 t + \frac{1}{2} \vec{\alpha} \ t^2 \qquad , \qquad \vec{\omega}(t) &= \vec{\omega}_0 + \vec{\alpha} \ t \\ \Delta \vec{\theta} &= \frac{1}{2} \left(\vec{\omega}_0 + \vec{\omega} \right) t \qquad \frac{1}{2} \omega_f^2 - \frac{1}{2} \omega_i^2 = \vec{\alpha} \cdot \left(\Delta \vec{\theta} \right) \end{split}$$

Rotational Inertia: $I = \sum m r^2$ and for a rolling object $I = \beta M R^2$

Kinetic Energy:
$$K_{translation} = \frac{1}{2} m v^2$$
 and $K_{rotation} = \frac{1}{2} I \omega^2$

Work:
$$Work = \int \tau \ d\theta$$
 or $Work = \tau \ \Delta\theta$ if torque is constant

Angular momentum: $\vec{\ell} = I \vec{\omega}$ (for a rigid body) or $\vec{\ell} = \vec{r} \times \vec{p}$ (always)

Torque:
$$\vec{\tau} = \vec{r} \times \vec{F}$$

Newton's second law:
$$\begin{cases} \Sigma \vec{\tau} = I \vec{\alpha} & \text{if } I \text{ is constant} \\ \Sigma \vec{\tau} = \frac{d\vec{\ell}}{dt} = \frac{d}{dt} (\vec{r} \times \vec{p}) \text{ (always)} \end{cases}$$

Physics 222 equations Page 2

Fluid Equations

Pressure:
$$P = \frac{Force}{Area}$$
 SI unit: $1 \ pascal = 1 \ Pa = 1 \frac{N}{m^2}$

Fluid Statics:
$$P = \rho \ g \ Depth$$
 $\rho = density$ $Depth = Depth$

Incompressible fluid flow:

$$flow \ rate = \frac{volume}{time} = (area)(velocity)$$

In the absence of sources or sinks: flow in = flow out

Fluid Potential:

For any kind of potential:
$$Potential = V \equiv \frac{Potential\ energy}{unit\ of\ stuff}$$

Fluid Potential =
$$V_f = \frac{Potential\ energy}{volume}$$
 $V_f = P + \rho gy$

Bernoulli's equation:

$$P + \rho gy + \frac{1}{2}\rho v^2 = constant$$

Viscosity: SI unit = $Pa \cdot s$

$$\eta = \frac{F \Delta y}{A \Delta v} \quad or \quad \frac{dv}{dy} = \frac{F}{\eta A}$$

Poiseuille's Equation:

flow rate =
$$(\Delta V_f)(C_f)$$
 $C_f = fluid \ conductance \ in \ \frac{m^3}{Pa \cdot s}$

In a cylindrical tube:
$$C_f = \frac{\pi R^4}{8\eta L}$$
 $R = radius$ $L = length$