Circuits I: (without inductance):

Resistors (Ohm's Law):

V = IR

Power: Power = $VI = I^2R$

Kirchhoff's Rules:

1. Junctions: " $\sum I_{in} = \sum I_{out}$ ", 2. Loops: $\sum voltages = 0$

Resistors in parallel: $\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R_{\text{TOTAL}}}$...in series: $R_1 + R_2 = R_{\text{TOTAL}}$

Capacitors: $O = C \Delta V$

Capacitors in parallel: $C_1 + C_2 = C_{\text{TOTAL}}$... in series: $\frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{C_{\text{TOTAL}}}$

RC Circuits: Time constant: $\tau = RC$

Discharging or charging: $f(t) = f_1 e^{-t/\tau} + f_2$

 $f(t) = f_0 e^{-t/\tau}$ or $f(t) = f_{\infty} (1 - e^{-t/\tau})$

Forces: $\vec{F}_{magnetic} = q\vec{v} \times \vec{B} = \ell \vec{I} \times \vec{B}$ or $\vec{F}_{EM} = q \left[\vec{E} + (\vec{v} \times \vec{B}) \right]$ **Magnetism:**

Magnetic fields from currents: A distance r from a straight wire: $|\vec{B}| = \frac{\mu_0}{2\pi} \frac{I}{r}$

At the center of a loop of wire of radius R: $|\vec{B}| = \frac{\mu_0}{2} \frac{I}{R}$

In a cylindrical coil (or inductor): $|\vec{B}| = \frac{\mu_0 N I}{length}$

Torque on a loop of wire: $\vec{\tau} = \vec{\mu} \times \vec{B}$ where $\mu = N I Area$

 $EMF = -L \frac{dI}{dt}$, and for a cylindrical inductor $|\vec{B}| = \frac{\mu_0 N I}{length}$

For an LC circuit (capacitor and inductor):

 $q = q_{\text{max}} \sin(\omega_0 t - \phi)$, $I = \dot{q}$, $EMF_L = -L\ddot{q}$, and $\omega_0 = \sqrt{\frac{1}{LC}}$

Maxwell's equations: $\epsilon_0 = 8.854 \times 10^{-12} \ C^2 / (N \ m^2)$ $\mu_0 = 4\pi \times 10^{-7} \ T \ m/A$

Gauss' law (for \vec{E} and \vec{B}) $\int_{\substack{closed \\ surface}} \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_0}$ and $\int_{\substack{closed \\ surface}} B \cdot d\vec{A} = 0$

Faraday's law: $\mathcal{E}mf = -\frac{d\Phi_B}{dt}$ or $\int_{loon} \vec{E} \cdot d\vec{\ell} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$

Ampere-Maxwell law: $\int_{loop} \vec{B} \cdot d\vec{\ell} = \mu_0 I_{enclosed} + \mu_0 \epsilon_0 \frac{d}{dt} \int \vec{E} \cdot d\vec{A}$

Harmonic oscillators:

Angular frequency: $\omega = 2\pi f = \frac{2\pi}{T}$

SHO Equation: $\ddot{x} = -\omega^2 x$

Solution to SHO Equation:

$$x - x_{eq} = A\sin(\omega_0 t - \varphi)$$

where ω_0 is the natural angular frequency of the oscillator

Mass on a spring: $\omega_0 = \sqrt{\frac{k}{m}}$ Simple pendulum: $\omega_0 = \sqrt{\frac{g}{\ell}}$

Wave kinematics:

Traveling wave: $f(x, t) = f(x \pm vt)$

Standing wave: $f(x,t) = f(x+vt) \pm f(x-vt)$

Sinusoidal wave: $f(x,t) = A \sin(kx \pm \omega t \pm \varphi)$

or $A\sin(kx + \omega t + \varphi) \pm A\sin(kx - \omega t + \varphi)$ $k = \frac{2\pi}{\lambda}$ $\omega = \frac{2\pi}{T}$ $v = \frac{\lambda}{T} = \lambda f = \frac{\omega}{k}$

Wave dynamics:

The wave equation: I forget...

The wave equation is either $\frac{\partial^2 f}{\partial x^2} = v^2 \frac{\partial^2 f}{\partial t^2}$ or $\frac{\partial^2 f}{\partial t^2} = v^2 \frac{\partial^2 f}{\partial x^2}$

I can't remember which it is, but you ought to be able to figure it out.

Velocities:

strings: $v = \sqrt{\frac{\tau}{\mu}}$ sound: $v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{\gamma P}{\rho}}$ light: $v = c = \sqrt{\frac{1}{\mu \varepsilon}}$

Sound:

Intensity and sound level (volume):

Intensity = $I = \frac{\text{Power}}{\text{Area}}$ $SI \ Unit = \frac{watt}{meter^2} = W \ m^{-2}$

Sound level in decibels = $\beta = 10 \log_{10} \left(\frac{I}{I_0} \right)$ $\left[I_0 = 10^{-12} W/m^2 \right]$

Doppler Effect for SOUND:

 $f_{observed} = \left(\frac{v_s \pm v_{observer}}{v_s \mp v_{source}}\right) f_{emitted}$

Physics 223 equations page 3

Damped and/or driven harmonic oscillators:

Damped springs: if $F_{spring} = -kx$ and $F_{friction} = -bv$

Without a driver (motor):

$$x = x_{\text{max}} e^{\left(-\frac{bt}{2m}\right)} \sin\left(\omega t - \phi\right) \text{ where } \omega = \sqrt{\omega_0^2 - \left(\frac{b}{2m}\right)^2}, \ v_{\text{max}} = \omega x_{\text{max}}, \text{ etc}$$

With a driver (motor with angular frequency ω):

$$v_{\text{max}} = \frac{\left(\omega F / m\right)}{\sqrt{\left(\omega^2 - \omega_0^2\right)^2 + \left(\frac{b\omega}{m}\right)^2}} = \frac{F}{\sqrt{\left(m\omega - \frac{k}{\omega}\right)^2 + \left(b\right)^2}}$$

Damped harmonic oscillators and RLC Circuits

Springs with fluid friction: $F_{spring} = -kx$ $F_{friction} = -bv$

Kinematics: $v = \dot{x}$ $a = \dot{v} = \ddot{x}$ and -kx - bv = ma

Resonant frequency: $\omega_0 = \sqrt{\frac{k}{m}}$

Damped harmonic oscillation:

$$x = x_{max} e^{\left(-\frac{bt}{2m}\right)} \sin(\omega t - \varphi), \qquad \omega = \sqrt{\omega_0^2 - \left(\frac{b}{2m}\right)^2}, \quad v_{max} = \omega x_{max}$$

RLC series circuits: $\Delta V_C = \frac{1}{C}q$, $\Delta V_R = RI$, $\Delta V_L = L\dot{I}$, where $\dot{q} = I$ $\dot{I} = \ddot{q}$

And
$$\frac{1}{c}q + RI + L\dot{I} = 0$$

Resonant frequency: $\omega_0 = \frac{1}{\sqrt{LC}}$

Without a driver (AC source):

$$I = I_{\text{max}} e^{\left(-\frac{Rt}{2L}\right)} \sin\left(\omega t - \phi\right) \text{ where } \omega = \sqrt{\omega_0^2 - \left(\frac{R}{2L}\right)^2}, I_{\text{max}} = \omega q_{\text{max}}, \text{ etc.}$$

Driven damped harmonic oscillators and AC Circuits:

With a driver (AC source with angular frequency ω):

$$\begin{split} EMF &= V_{max} \sin(\omega t) \\ I_{max} &= \frac{V_{max}}{Z} = \frac{V_{max}}{\sqrt{R^2 + (X_L - X_C)^2}} = \frac{V_{max}}{R\sqrt{1 + Q^2 \left(x - \frac{1}{x}\right)^2}} \\ &= \frac{V_{max}}{R} \cos \varphi \end{split}$$

Symbols and vocabulary for AC Circuits

$\Delta V_L = X_L I_{MAX} \cos(\omega t - \varphi)$	$X_L = \omega L$	$\omega = x \omega_0$
$\Delta V_R = X_R I_{MAX} \sin(\omega t - \varphi)$	$X_R = R$	$Q^2 = \frac{L}{R^2 C}$
$\Delta V_C = -X_C I_{MAX} \cos(\omega t - \varphi)$	$X_C = \frac{1}{\omega C}$	$\tan \varphi = \frac{X_C - X_L}{R}$

Power:
$$Power_{MAX} = V_{MAX} I_{MAX} \cos \varphi = \frac{(V_{max})^2}{R} \cos^2 \varphi$$

 $Power_{RMS} = V_{RMS} I_{RMS} \cos \varphi = \frac{1}{2} Power_{MAX}$

Q Factor: for an RLC circuit, $Q^2 = \frac{L}{R^2 C}$

Optics:

$$v_{light\ in\ material} = \frac{c}{n} \ , \ n \ge 1 \quad \left(c = 3.00 \times 10^8 \ m/s = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} \right)$$
Index of refraction:
$$v = \frac{1}{\sqrt{\mu_0 \varepsilon}} \approx \frac{1}{\sqrt{\mu_0 \varepsilon}} = \frac{1}{\sqrt{\mu_0 (\kappa \varepsilon_0)}} = \frac{c}{\sqrt{\kappa}} \ , \quad \text{so} \quad n \approx \sqrt{\kappa}$$

Reflection: $\theta_{incident} = \theta_{reflected}$ Refraction: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

 $Intensity = \frac{Power}{Area} \qquad \text{For waves:} \quad I_{RMS} = \frac{1}{2} I_{\text{max}}$ $I_{\text{max}} = \left| \frac{1}{\mu_0} \left(\vec{E}_{\text{max}} \times \vec{B}_{\text{max}} \right) \right| = c \varepsilon_0 \ E_{\text{max}}^2 = \frac{c}{\mu_0} \ B_{\text{max}}^2 \ , \qquad E_{\text{max}} = c \ B_{\text{max}}$

Polarization:

When unpolarized light passes through one polarizer: $I_1 = \frac{1}{2}I_0$

When polarized light passes through a second polarizer rotated at an angle of θ from the first: $I_2 = I_1 \cos^2 \theta = \frac{1}{2} I_0 \cos^2 \theta$