Circuits I: (without inductance):

Resistors (Ohm's Law):

V = IR

Power: Power = $VI = I^2R$

Kirchhoff's Rules:

1. Junctions: " $\sum I_{in} = \sum I_{out}$ ", 2. Loops: $\sum voltages = 0$

Resistors in parallel: $\frac{1}{R_1} + \frac{1}{R_2} = \frac{1}{R_{\text{TOTAL}}}$...in series: $R_1 + R_2 = R_{\text{TOTAL}}$

Capacitors: $O = C \Delta V$

Capacitors in parallel: $C_1 + C_2 = C_{\text{TOTAL}}$... in series: $\frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{C_{\text{TOTAL}}}$

RC Circuits: Time constant: $\tau = RC$

Discharging or charging: $f(t) = f_1 e^{-t/\tau} + f_2$

 $f(t) = f_0 e^{-t/\tau}$ or $f(t) = f_{\infty} (1 - e^{-t/\tau})$

Forces: $\vec{F}_{mannetic} = q\vec{v} \times \vec{B} = \ell \vec{I} \times \vec{B}$ or $\vec{F}_{EM} = q \left[\vec{E} + (\vec{v} \times \vec{B}) \right]$ **Magnetism:**

Magnetic fields from currents: A distance r from a straight wire: $|\vec{B}| = \frac{\mu_0}{2\pi} \frac{I}{r}$

At the center of a loop of wire of radius R: $|\vec{B}| = \frac{\mu_0}{2} \frac{I}{R}$

In a cylindrical coil (or inductor): $|\vec{B}| = \frac{\mu_0 N I}{langth}$

Torque on a loop of wire: $\vec{\tau} = \vec{\mu} \times \vec{B}$ where $\mu = N I Area$

 $EMF = -L \frac{dI}{dt}$, and for a cylindrical inductor $|\vec{B}| = \frac{\mu_0 N I}{length}$

For an LC circuit (capacitor and inductor):

 $q = q_{\text{max}} \sin(\omega_0 t - \phi)$, $I = \dot{q}$, $EMF_L = -L\ddot{q}$, and $\omega_0 = \sqrt{\frac{1}{LC}}$

Maxwell's equations: $\epsilon_0 = 8.854 \times 10^{-12} \ C^2/(N \ m^2)$ $\mu_0 = 4\pi \times 10^{-7} \ T \ m/A$

Gauss' law (for \vec{E} and \vec{B}) $\int_{\substack{closed \\ surface}} \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_0}$ and $\int_{\substack{closed \\ surface}} B \cdot d\vec{A} = 0$

Faraday's law: $\mathcal{E}mf = -\frac{d\Phi_B}{dt}$ or $\int_{loon} \vec{E} \cdot d\vec{\ell} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$

Ampere-Maxwell law: $\int_{loop} \vec{B} \cdot d\vec{\ell} = \mu_0 I_{encloed} + \mu_0 \epsilon_0 \frac{d}{dt} \int \vec{E} \cdot d\vec{A}$

Harmonic oscillators:

Angular frequency: $\omega = 2\pi f = \frac{2\pi}{T}$

SHO Equation: $\ddot{x} = -\omega^2 x$

Solution to SHO Equation:

$$x - x_{eq} = A\sin(\omega_0 t - \varphi)$$

where ω_0 is the natural angular frequency of the oscillator

Mass on a spring: $\omega_0 = \sqrt{\frac{k}{m}}$ Simple pendulum: $\omega_0 = \sqrt{\frac{g}{\ell}}$

Wave kinematics:

Traveling wave: $f(x,t) = f(x \pm vt)$

Standing wave: $f(x,t) = f(x+vt) \pm f(x-vt)$

Sinusoidal wave: $f(x, t) = A \sin(kx \pm \omega t \pm \varphi)$

or $A\sin(kx + \omega t + \varphi) \pm A\sin(kx - \omega t + \varphi)$

 $k = \frac{2\pi}{\lambda}$ $\omega = \frac{2\pi}{T}$ $v = \frac{\lambda}{T} = \lambda f = \frac{\omega}{k}$

Wave dynamics:

The wave equation: I forget...

The wave equation is either $\frac{\partial^2 f}{\partial x^2} = v^2 \frac{\partial^2 f}{\partial t^2}$ or $\frac{\partial^2 f}{\partial t^2} = v^2 \frac{\partial^2 f}{\partial x^2}$

I can't remember which it is, but you ought to be able to figure it out.

Velocities:

strings:
$$v = \sqrt{\frac{\tau}{\mu}}$$
 sound: $v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{\gamma P}{\rho}}$ light: $v = c = \sqrt{\frac{1}{\mu \varepsilon}}$

Interference:

Interference for two sources:

Constructive interference when $\Delta d = n\lambda$ $(n = 0, \pm 1, \pm 2, ...)$

Double slit interference for light (distances $>> \lambda$, separation of slits = d):

Interference pattern = $\cos^2\left(\frac{1}{2}k\ d\sin\theta\right)$

Constructive interference when: $d \sin \theta = n \lambda$ $(n = 0, \pm 1, \pm 2, ...)$